#K-NN分类

import os
import sys
import time
import operator
import cx_Oracle
import numpy as np
import pandas as pd
import tensorflow as tf conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() #获取数据集
def getdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable \
from menzhenZ where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
dataset = []
lables = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
dataset.append(temp)
lables.append(row[5])
return np.array(dataset),np.array(lables) def gettestdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from \
testZ where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
testdataset = []
testlables = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
testdataset.append(temp)
testlables.append(row[5])
return np.array(testdataset),np.array(testlables) #K-NN分类
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] #归一化
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = np.zeros(np.shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - np.tile(minVals, (m,1))
normDataSet = normDataSet/np.tile(ranges, (m,1))
return normDataSet, ranges, minVals erace = []
accuc = []
t = [] #启动和检测模型
def datingClassTest():
datingDataMat,datingLabels = getdata("外科","胸外科")
normMat, ranges, minVals = autoNorm(datingDataMat)
testdataset,testlables = gettestdata("外科","胸外科")
testnormMat, testranges, testminVals = autoNorm(testdataset)
errorCount = 0.0
start = time.time()
for j in [3,5,7,9,11,13]:
for i in range(np.shape(testnormMat)[0]):
classifierResult = classify0(testnormMat[i,:],normMat,datingLabels,j)
print("the classifier came back with: %s, the real answer is: %s" % (classifierResult, testlables[i]))
if (classifierResult != testlables[i]):
errorCount += 1.0
end = time.time()
t.append(end)
erace.append(errorCount/float(np.shape(testnormMat)[0])*100)
accuc.append((1.0-errorCount/float(np.shape(testnormMat)[0]))*100)
print("错误率: %.2f%%" % (errorCount/float(np.shape(testnormMat)[0])*100))
print("准确率: %.2f%%" % ((1.0-errorCount/float(np.shape(testnormMat)[0]))*100))
print("训练和预测一共耗时: %.2f 秒" % (end-start))
datingClassTest()
print(accuc)
print(erace)
print(t)

#探索不同的K值对算法的影响

import matplotlib.pyplot as plt

x = [3,5,7,9,11,13]
plt.plot(x,erace,c='r')
plt.plot(x,accuc,c='g')
plt.legend(['error race','accuce race'],loc=9)
plt.show()
print(accuc)
print(erace)

#决策树
import os
import sys
import time
import operator
import cx_Oracle
import numpy as np
import pandas as pd
from math import log
import tensorflow as tf conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() #获取数据集
def getdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from menzhenZ where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
dataset = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
temp.append(row[5])
dataset.append(temp)
lables = []
lables.append("呼吸急促")
lables.append("持续性脉搏加快")
lables.append("畏寒")
lables.append("血压降低")
lables.append("咳血")
return dataset,lables def gettestdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from testZ where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
testdataset = []
testlables = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
testdataset.append(temp)
testlables.append(row[5])
return testdataset,testlables #计算熵值
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob,2)
return shannonEnt #按照给定特征划分数据集
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet #选择最好的属性
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature #统计机制
def majorityCnt(classList):
classCount={}
for vote in classList:
if vote not in classCount.keys(): classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] #创建决策树
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
temp = []
for i in labels:
if i != labels[bestFeat]:
temp.append(i)
labels = temp
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
return myTree #使用决策树模型分类
def classify(inputTree,featLabels,testVec):
for i in inputTree.keys():
firstStr = i
break
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
key = testVec[featIndex]
valueOfFeat = secondDict[key]
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else: classLabel = valueOfFeat
return classLabel #启动和检测模型
def datingClassTest():
dataSet,labels = getdata("外科","胸外科")
myTree = createTree(dataSet,labels)
testdataset,testlables = gettestdata("外科","胸外科")
errorCount = 0.0
start = time.time()
for i in range(np.shape(testdataset)[0]):
classifierResult = classify(myTree,labels,testdataset[i])
print("the classifier came back with: %s, the real answer is: %s" % (classifierResult, testlables[i]))
if (classifierResult != testlables[i]):
errorCount += 1.0
end = time.time()
print("错误率: %.2f%%" % (errorCount/float(np.shape(testdataset)[0])*100))
print("准确率: %.2f%%" % ((1.0-errorCount/float(np.shape(testdataset)[0]))*100))
print("训练和预测一共耗时: %.2f 秒" % (end-start))
datingClassTest()

#选取前600条记录生成并打印决策树
dataSet,labels = getdata("外科","胸外科")
dataSet = dataSet[0:600]
labels = labels[0:600]
myTree = createTree(dataSet,labels)
print(myTree)

#比较K-NN算法与决策树算法的优劣
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt x = np.array([10,12])
y = [85.6,87.3]
plt.bar(x,y,edgecolor='yellow')
for i,j in zip(x,y):
plt.text(i-0.2,j-0.2,'%.2f%%' % j)
plt.text(9.7,40,'K-NN right race')
plt.text(11.7,40,'Tree right race')
plt.show()

#使用神经网络探索数据集
import sys
import os
import time
import operator
import cx_Oracle
import numpy as np
import pandas as pd
import tensorflow as tf conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() #one-hot编码
def onehot(labels):
n_sample = len(labels)
n_class = max(labels) + 1
onehot_labels = np.zeros((n_sample, n_class))
onehot_labels[np.arange(n_sample), labels] = 1
return onehot_labels #获取数据集
def getdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from menzhen where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
dataset = []
lables = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
dataset.append(temp)
if(row[5]==3):
lables.append(0)
elif(row[5]==6):
lables.append(1)
else:
lables.append(2)
dataset = np.array(dataset)
lables = np.array(lables)
dataset = dataset.astype(np.float32)
labless = onehot(lables)
return dataset,labless #获取测试数据集
def gettestdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from test where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
testdataset = []
testlables = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
testdataset.append(temp)
if(row[5]==3):
testlables.append(0)
elif(row[5]==6):
testlables.append(1)
else:
testlables.append(2)
testdataset = np.array(testdataset)
testlables = np.array(testlables)
testdataset = testdataset.astype(np.float32)
testlabless = onehot(testlables)
return testdataset,testlabless dataset,labless = getdata("外科","胸外科")
testdataset,testlables = gettestdata("外科","胸外科") dataset = dataset[0:100]
labless = labless[0:100] x_data = tf.placeholder("float32", [None, 5])
y_data = tf.placeholder("float32", [None, 3]) weight = tf.Variable(tf.ones([5, 3]))
bias = tf.Variable(tf.ones([3])) #使用softmax激活函数
y_model = tf.nn.softmax(tf.matmul(x_data, weight) + bias) #y_model = tf.nn.relu(tf.matmul(x_data, weight) + bias) # loss = tf.reduce_sum(tf.pow((y_model - y_data), 2)) #使用交叉熵作为损失函数
loss = -tf.reduce_sum(y_data*tf.log(y_model)) # train_step = tf.train.GradientDescentOptimizer(1e-4).minimize(loss) #使用AdamOptimizer优化器
train_step = tf.train.AdamOptimizer(1e-4).minimize(loss) #train_step = tf.train.MomentumOptimizer(1e-4,0.9).minimize(loss) #评估模型
correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
start = time.time()
for _ in range(10):
for i in range(int(len(dataset)/100)):
sess.run(train_step, feed_dict={x_data:dataset[i:i+100,:], y_data:labless[i:i+100,:]})
print("模型准确率",sess.run(accuracy, feed_dict={x_data:testdataset , y_data:testlables}))
end = time.time()
print("模型训练和测试公耗时:%.2f 秒" % (end-start))

#加深一层神经网络
import sys
import os
import time
import operator
import cx_Oracle
import numpy as np
import pandas as pd
import tensorflow as tf conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr')
cursor = conn.cursor() #one-hot编码
def onehot(labels):
n_sample = len(labels)
n_class = max(labels) + 1
onehot_labels = np.zeros((n_sample, n_class))
onehot_labels[np.arange(n_sample), labels] = 1
return onehot_labels #获取数据集
def getdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from menzhen where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
dataset = []
lables = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
dataset.append(temp)
if(row[5]==3):
lables.append(0)
elif(row[5]==6):
lables.append(1)
else:
lables.append(2)
dataset = np.array(dataset)
lables = np.array(lables)
dataset = dataset.astype(np.float32)
labless = onehot(lables)
return dataset,labless def gettestdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from test where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
testdataset = []
testlables = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
testdataset.append(temp)
if(row[5]==3):
testlables.append(0)
elif(row[5]==6):
testlables.append(1)
else:
testlables.append(2)
testdataset = np.array(testdataset)
testlables = np.array(testlables)
testdataset = testdataset.astype(np.float32)
testlabless = onehot(testlables)
return testdataset,testlabless dataset,labless = getdata("外科","胸外科")
testdataset,testlables = gettestdata("外科","胸外科") dataset = dataset[0:100]
labless = labless[0:100] x_data = tf.placeholder("float32", [None, 5])
y_data = tf.placeholder("float32", [None, 3]) weight1 = tf.Variable(tf.ones([5, 20]))
bias1 = tf.Variable(tf.ones([20]))
y_model1 = tf.matmul(x_data, weight1) + bias1 #加深一层神经网络
weight2 = tf.Variable(tf.ones([20, 3]))
bias2 = tf.Variable(tf.ones([3]))
y_model = tf.nn.softmax(tf.matmul(y_model1, weight2) + bias2) loss = tf.reduce_sum(tf.pow((y_model - y_data), 2))
# loss = -tf.reduce_sum(y_data*tf.log(y_model)) #train_step = tf.train.GradientDescentOptimizer(1e-4).minimize(loss)
train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)
# train_step = tf.train.MomentumOptimizer(1e-4,0.9).minimize(loss) correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
start = time.time()
for _ in range(10):
for i in range(int(len(dataset)/100)):
sess.run(train_step, feed_dict={x_data:dataset[i:i+100,:], y_data:labless[i:i+100,:]})
print("模型准确率",sess.run(accuracy, feed_dict={x_data:testdataset , y_data:testlables}))
end = time.time()
print("模型训练和测试公耗时:%.2f 秒" % (end-start))

#比较决策树与神经网络的优劣
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt x = np.array([10,12])
y = [87.1,87.4]
plt.bar(x,y,edgecolor="yellow")
for i,j in zip(x,y):
plt.text(i-0.2,j-0.2,"%.2f%%" % j)
plt.text(9.7,40,"Tree right race")
plt.text(11.7,40,"Net right race")
plt.scatter([9.7,11.7],[0.05,0.36],c="r")
plt.plot([9.7,11.7],[0.05,0.36],c="g")
plt.show()

#统计各种算法处理模型数据
K-NN算法:
当K取[3,5,7,9,11,13]时,对应的:
准确率:[85.6, 72.6, 60.0, 47.4, 34.8, 22.299999999999996]
总耗时:[1554119134.435363, 1554119136.6192698,
1554119138.846019, 1554119141.2507513, 1554119143.4782736, 1554119145.5415804] 决策树:
准确率: 87.10%
训练和预测一共耗时: 0.05 秒 神经网络设计:
1 最小二乘法 softmax GradientDescentOptimizer 模型
模型准确率 0.874
模型训练和测试公耗时:0.16 秒 2 最小二乘法 softmax AdamOptimizer 模型
模型准确率 0.874
模型训练和测试公耗时:0.19 秒 3 最小二乘法 softmax MomentumOptimizer 模型
模型准确率 0.874
模型训练和测试公耗时:0.18 秒 4 最小二乘法 relu GradientDescentOptimizer 模型
模型准确率 0.874
模型训练和测试公耗时:0.17 秒 5 最小二乘法 relu AdamOptimizer 模型
模型准确率 0.874
模型训练和测试公耗时:0.15 秒 6 最小二乘法 relu MomentumOptimizer 模型
模型准确率 0.006
模型训练和测试公耗时:0.19 秒 7 交叉熵 softmax GradientDescentOptimizer 模型
模型准确率 0.874
模型训练和测试公耗时:0.09 秒 8 交叉熵 softmax AdamOptimizer 模型
模型准确率 0.874
模型训练和测试公耗时:0.08 秒 9 交叉熵 softmax MomentumOptimizer 模型
模型准确率 0.874
模型训练和测试公耗时:0.06 秒 10 交叉熵 relu GradientDescentOptimizer 模型
模型准确率 0.874
模型训练和测试公耗时:0.08 秒 11 交叉熵 relu AdamOptimizer 模型
模型准确率 0.874
模型训练和测试公耗时:0.08 秒 12 交叉熵 relu MomentumOptimizer 模型
模型准确率 0.874
模型训练和测试公耗时:0.09 秒 从上面的12种神经网络设计模型中可以看出:最小二乘法 relu MomentumOptimizer 模型
的准确率只有0.006,所以这种模型的设计是失败的。 a = [0.874]*10
print(a)
#计算成功的各种神经网络模型的准确率与耗时的比值:
a = [0.874]*11
b = [0.16,0.19,0.18,0.17,0.15,0.09,0.08,0.06,0.08,0.09,0.09]
c = []
for i in range(len(a)):
c.append(a[i]/b[i])
for i in range(len(c)):
print("准确率与耗时的比值:%.4f" % (c[i]))

#K-NN算法
#当K取3、5、7、9、11、13时的准确率饼图分布显示
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt acc = [85.6, 72.6, 60.0, 47.4, 34.8, 22.2]
labels = ['K-3','K-5','K-7','K-9','K-11','K-13']
plt.pie(acc,labels=labels,shadow=True,startangle=90,autopct='%1.4f%%')
plt.axis('equal')
plt.title('K-NN',fontsize=25)
plt.show()

#K-NN算法耗时散点图
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D x = np.array([1,2,3,4,5,6])
z = np.array([1554119134.435363, 1554119136.6192698,1554119138.846019,
1554119141.2507513, 1554119143.4782736, 1554119145.5415804])
plt.scatter(x,z,c='g')
plt.xticks(x+0.4,['KNN-1','KNN-2','KNN-3','KNN-4','KNN-5','KNN-6'])
plt.show()

#神经网络算法对应各种有用的模型设计耗时曲线图
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D x = np.array([1,2,3,4,5,6,7,8,9,10,11])
z = np.array([0.16,0.19,0.18,0.17,0.15,0.09,0.08,0.06,0.08,0.09,0.09])
plt.scatter(x,z,c='r')
plt.xticks(x+0.4,['NET-1','NET-2','NET-3','NET-4','NET-5',
'NET-6','NET-7','NET-8','NET-9','NET-10','NET-11'])
plt.show()

#K-NN、决策树以及神经网络算法对比
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt acc = [85.6, 72.6, 60.0, 47.4, 34.8, 22.2,87.10,0.874,
87.4,87.4,87.4,87.4,87.4,87.4,87.4,87.4,87.4,87.4]
labels = ['K-3','K-5','K-7','K-9','K-11','K-13','TREE',
'NET-1','NET-2','NET-3','NET-4','NET-5','NET-6','NET-7',
'NET-8','NET-9','NET-10','NET-11']
explode = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2,0,0,0]
plt.pie(acc,labels=labels,explode=explode,shadow=True,startangle=90,autopct='%1.4f%%')
plt.axis('equal')
plt.title('K-NN AND TREE AND NET',fontsize=25)
plt.show()

吴裕雄 python 人工智能——基于神经网络算法在智能医疗诊断中的应用探索代码简要展示的更多相关文章

  1. 吴裕雄 PYTHON 人工智能——基于MASK_RCNN目标检测(5)

    import os import sys import numpy as np import tensorflow as tf import matplotlib import matplotlib. ...

  2. 吴裕雄 PYTHON 人工智能——基于MASK_RCNN目标检测(4)

    import os import sys import random import math import re import time import numpy as np import tenso ...

  3. 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(3)

    import os import sys import random import math import re import time import numpy as np import cv2 i ...

  4. 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(2)

    import os import sys import itertools import math import logging import json import re import random ...

  5. 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(1)

    import os import sys import random import math import numpy as np import skimage.io import matplotli ...

  6. 吴裕雄 python 人工智能——智能医疗系统后台用户注册、登录和初诊简约版代码展示

    #用户注册.登录模块 #数据库脚本 CREATE TABLE usertable( userid number(8) primary key not null , username varchar(5 ...

  7. 吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用

    import numpy as np from matplotlib import pyplot as plt from sklearn import neighbors, datasets from ...

  8. 吴裕雄 python 机器学习——人工神经网络与原始感知机模型

    import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...

  9. 吴裕雄 PYTHON 人工智能——智能医疗系统后台智能分诊模块及系统健康养生公告简约版代码展示

    #coding:utf-8 import sys import cx_Oracle import numpy as np import pandas as pd import tensorflow a ...

随机推荐

  1. PHP pdf 转 图片

    function pdf2png($pdf,$path,$page=-1) { if(!extension_loaded('imagick')) { return false; } if(!file_ ...

  2. 完整安装IIS服务

    此文主要是针对前面提到的 IIS支持json.geojson文件 添加脚本映射时,提示找不到asp.dll时的解决方法. 主要参考了此文:http://www.kodyaz.com/articles/ ...

  3. 集成unittest做接口测试

    unittest接口测试 上篇已经讲了接口测试的做法,利用的是postman工具,工具始终是工具,它有一定的局限性,比如测试数据的存放,断言的方法以及上下接口关联使用灵活性.python对http接口 ...

  4. foreach中如何取全部长度的值

    foreach($data as $num=>$key ){ return $num; } 关键就是这个$num;

  5. CAN总线电平(隐性与显性)

            CAN2.0B规范定义了两种互补的逻辑数值:显性和隐性.同时传送显性和隐性位时,总线呈现显性状态:同时传送显性状态位时,总线呈现显性状态:同时传送隐性状态位时,总线呈现隐性状态.显性数 ...

  6. jvm(n):JVM面试

    Jvm内存结构,一般是面试官对Java虚拟机这块考察的第一问. Java虚拟机的内存结构一般可以从线程共有和线程私有两部分起头作答,然后再详细说明各自的部分,类似树状结构的作答,好处就是思路清晰,面试 ...

  7. spring(四):IoC

    IoC-Inversion of Control,即控制反转 IoC意味着将你设计好的对象交给容器控制,而不是传统的在你的对象内部直接控制. 理解IoC的关键:"谁控制谁,控制什么,为何是反 ...

  8. 微信h5游戏如何在微信中做好域名防封 防屏蔽的 工作

    最近微信开始大封杀,不知道原因是什么,可能是因为违规网站太多了吧,很多网站都被错杀了,下面我们聊一下怎样才能避免域名被封杀呢. 在各种不同的域名当中,能够做出了更适合的选择,这些对于大家域名防封_域名 ...

  9. 项目中的process.bpmn的读-过程

    1.这次项目中遇到了process.bpmn类的封装好的类.怎么读呢?不知道,一周过去了,总算明白点. 2.首先也是从Controller开始,走进service层,比如mybatis,调用的就不是m ...

  10. rabbitmq快速安装(实测有效)(新版)

    rabbitMq的快速安装和使用在第二部分,第一部分就看个热闹,第二部分直接可以完成环境的搭建 如果需要资料的话可以直接来 这里 进行下载 第一部分 http://www.cnerlang.com/r ...