[Paper Reading] Image Captioning using Deep Neural Architectures (arXiv: 1801.05568v1)
Main Contributions:
- A brief introduction about two different methods (retrieval based method and generative method) for image captioning task.
- The authors implemented the classical model, Show and Tell, and gave analyses based on the experiments.
Excerpts:
- To achieve this goal, Show & Tell model is created by hybridizing two different models. It takes the image as input and provides it into Inception-v3 model. At the end of Inception-v3 model, a single fully connected layer is added. This layer will transform the output of Inception-v3 model into a word embedding vector. We input this word embedding vector into series of LSTM cells.
- For any given caption, we add two additional symbols as the start word and stop word. Whenever the stop word is encounted, it stops generating the sentence and it marks end of the string.
- Show & Tell model uses Beam Search to find suitable words to generate captions.
[Paper Reading] Image Captioning using Deep Neural Architectures (arXiv: 1801.05568v1)的更多相关文章
- Paper Reading - Show and Tell: A Neural Image Caption Generator ( CVPR 2015 )
Link of the Paper: https://arxiv.org/abs/1411.4555 Main Points: A generative model ( NIC, GoogLeNet ...
- Paper Reading - Show, Attend and Tell: Neural Image Caption Generation with Visual Attention ( ICML 2015 )
Link of the Paper: https://arxiv.org/pdf/1502.03044.pdf Main Points: Encoder-Decoder Framework: Enco ...
- [Paper Reading] Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
论文链接:https://arxiv.org/pdf/1502.03044.pdf 代码链接:https://github.com/kelvinxu/arctic-captions & htt ...
- [Paper Reading] Show and Tell: A Neural Image Caption Generator
论文链接:https://arxiv.org/pdf/1411.4555.pdf 代码链接:https://github.com/karpathy/neuraltalk & https://g ...
- Training Deep Neural Networks
http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html //转载于 Training Deep Neural ...
- Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
目录 概 主要内容 Mustafa A., Khan S., Hayat M., Goecke R., Shen J., Shao L., Adversarial Defense by Restric ...
- Paper Reading:Deep Neural Networks for YouTube Recommendations
论文:Deep Neural Networks for YouTube Recommendations 发表时间:2016 发表作者:(Google)Paul Covington, Jay Adams ...
- 为什么深度神经网络难以训练Why are deep neural networks hard to train?
Imagine you're an engineer who has been asked to design a computer from scratch. One day you're work ...
- [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
About this Course This course will teach you the "magic" of getting deep learning to work ...
随机推荐
- 【[HNOI2016]序列】
莫队好题啊 莫队来做这个题的难点就是考虑如何在\(O(1)\)时间内由\([l,r]\)转移到\([l,r+1]\) 显然加入\(r+1\)这个数之后会和之前所有的位置都产生一个区间,就是要去快速求出 ...
- virtualbox+vagrant学习-2(command cli)-17-vagrant ssh命令
SSH 格式: vagrant ssh [options] [name|id] [-- extra ssh args] 这将SSH导入正在运行的vagrant机器,并允许你访问机器的shell. us ...
- 在centos7上搭建博客之小白教程~
原理 http使用方法一编译安装,php模块打入方式实现. 软件版本 在本次实验中,我们需要用到的软件版本如下: apr-1.6.2 apr-util-1.6.0 httpd-2.4.28 maria ...
- pm2踩过的坑
pm2实现一键部署,能将github上的代码拉到服务器,但是死活就是起不了服务. pm2部署命令: pm2 deploy ecosystem.json production setup pm2 dep ...
- Mysql 多实例实施步骤
基本理论:利用同一套安装程序,不同配置文件,不同启动程序,不同数据目录.有公用资源,也有私有资源. 实现步骤: 1.正常安装mysql,二进制安装或者编译安装. 2.创建mysql多实例总目录,总目录 ...
- java的静态方法多态和匿名对象
静态方法: 看如下代码 父类: public class FU { public static void show(){ System.out.println("this is fu!&qu ...
- ubuntu下安装eclipse IDE for C/C++ developers
序 linux的GUI和windos比起来实在逊色,虽然它的终端模式(命令行模式)非常强大.linux发行版ubuntu的GUI相对其他版本要华丽一些,所以最近由redhat转向ubuntu进行li ...
- MySQL添加、删除索引
1.索引类型 UNIQUE(唯一索引):不可以出现相同的值,可以有NULL值: INDEX(普通索引):允许出现相同的索引内容: PROMARY KEY(主键索引):不允许出现相同的值: fullte ...
- docker 简要学习
一.Docker的安装和启动 使用环境centos7 yum包更新到最新 sudo yum update 安装需要的软件包,yum-util提供yum-config-manager功能 sudo yu ...
- watir-webdriver 中根据html5中的data-*属性设置元素
def jscript(key="",*hashdict) key_dict=hashdict[0].keys[0] value_dict=hashdict[0][key_dict ...