《DSP using MATLAB》Problem 7.38

代码:
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
%% Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf(' <DSP using MATLAB> Problem 7.38 \n\n'); banner();
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ % bandpass, PM method
ws1 = 0.2*pi; wp1 = 0.35*pi; wp2 = 0.55*pi; ws2 = 0.75*pi;
Rp = 0.25; As = 40;
[delta1, delta2] = db2delta(Rp, As)
deltaH = max(delta1,delta2); deltaL = min(delta1,delta2); f = [ws1, wp1, wp2, ws2]/pi; m = [0, 1, 0]; delta = [delta2, delta1, delta2]; [N, f0, m0, weights] = firpmord(f, m, delta);
fprintf('\n-------------------------------------------\n');
fprintf('\n Results by firpmord function:\n');
N
%f0
%m0
%weights
fprintf('\n-------------------------------------------\n'); weights = [delta1/delta2 1 delta1/delta2] f = [ 0 ws1 wp1 wp2 ws2 pi]/pi;
m = [ 0 0 1 1 0 0]; h = firpm(N, f, m, weights);
M = N + 1
[db, mag, pha, grd, w] = freqz_m(h, [1]);
delta_w = 2*pi/1000;
ws1i = floor(ws1/delta_w)+1; wp1i = floor(wp1/delta_w)+1;
ws2i = floor(ws2/delta_w)+1; wp2i = floor(wp2/delta_w)+1; Asd = -max(db(1:1:ws1i)) h = firpm(N+2, f, m, weights);
M = N + 3
[db, mag, pha, grd, w] = freqz_m(h, [1]);
delta_w = 2*pi/1000;
ws1i = floor(ws1/delta_w)+1; wp1i = floor(wp1/delta_w)+1;
ws2i = floor(ws2/delta_w)+1; wp2i = floor(wp2/delta_w)+1; Asd = -max(db(1:1:ws1i)) %[Hr, ww, a, L] = Hr_Type1(h);
[Hr,omega,P,L] = ampl_res(h);
l = 0:M-1; delta_w = 2*pi/1000; sp_edge1 = ws1/delta_w+1; sp_edge2 = ws2/delta_w+1;
%% -------------------------------------------------
%% Plot
%% ------------------------------------------------- figure('NumberTitle', 'off', 'Name', 'Problem 7.38')
set(gcf,'Color','white'); subplot(2,2,1); stem(l, h); axis([-1, M, -0.4, 0.45]); grid on;
xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response, M=27');
set(gca,'XTickMode','manual','XTick',[0,(M-1)/2,M-1]);
set(gca,'YTickMode','manual','YTick',[-0.4:0.1:0.4]); subplot(2,2,2); plot(w/pi, db); axis([0, 1, -80, 10]); grid on;
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB ');
set(gca,'XTickMode','manual','XTick',f)
set(gca,'YTickMode','manual','YTick',[-60,-40,0]);
set(gca,'YTickLabelMode','manual','YTickLabels',['60';'40';' 0']); subplot(2,2,3); plot(omega/pi, Hr); axis([0, 1, -0.2, 1.2]); grid on;
xlabel('frequency in \pi nuits'); ylabel('Hr(\omega)'); title('Amplitude Response');
set(gca,'XTickMode','manual','XTick',f)
set(gca,'YTickMode','manual','YTick',[0,1]); subplot(2,2,4); axis([0, 1, -deltaH, deltaH]);
sb1w = omega(1:1:ws1i)/pi; sb1e = Hr(1:1:ws1i)-m(1); %sb1e = (Hr(1:1:ws1i)-m(1))*weights(1);
pbw = omega(wp1i:wp2i)/pi; pbe = Hr(wp1i:wp2i)-m(3); %pbe = (Hr(wp1i:wp2i)-m(3))*weights(2);
sb2w = omega(ws2i:501)/pi; sb2e = Hr(ws2i:501)-m(5); %sb2e = (Hr(ws2i:501)-m(5))*weights(3); plot(sb1w,sb1e,pbw,pbe,sb2w,sb2e); grid on; % error %axis([0, 1, -deltaL-0.02, deltaL+0.02]); grid on;
xlabel('frequency in \pi units'); ylabel('Hr(\omega)'); title('Error Response'); %title('Weighted Error'); set(gca,'XTickMode','manual','XTick',f)
set(gca,'YTickMode','manual','YTick',[-deltaH, 0, deltaH]);
%set(gca,'XGrid','on','YGrid','on') figure('NumberTitle', 'off', 'Name', 'Problem 7.38 AmpRes of h(n), Parks-McClellan Method')
set(gcf,'Color','white'); plot(omega/pi, Hr); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Hr(\omega)'); title('Amplitude Response');
set(gca,'YTickMode','manual','YTick',[-delta2,delta2, 1 - delta1, 1 + delta1]);
set(gca,'XTickMode','manual','XTick',f);
运行结果:
运用Parks-McClellen算法,滤波器长度M=27,比较合适


脉冲响应、幅度谱和误差函数

振幅谱

下面是P7.9的结果,可看出,P-M法得到的长度(M=27)比窗函数(M=43)得到的小得多。


第7章终于弄完了,内心小欢喜一下,放一张田地的照片放松放松,明天开始第8章!

《DSP using MATLAB》Problem 7.38的更多相关文章
- 《DSP using MATLAB》Problem 5.38
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 8.38
代码: function [wpLP, wsLP, alpha] = bp2lpfre(wpbp, wsbp) % Band-edge frequency conversion from bandpa ...
- 《DSP using MATLAB》Problem 7.27
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.26
注意:高通的线性相位FIR滤波器,不能是第2类,所以其长度必须为奇数.这里取M=31,过渡带里采样值抄书上的. 代码: %% +++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.25
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.24
又到清明时节,…… 注意:带阻滤波器不能用第2类线性相位滤波器实现,我们采用第1类,长度为基数,选M=61 代码: %% +++++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.23
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output Info a ...
- 《DSP using MATLAB》Problem 7.16
使用一种固定窗函数法设计带通滤波器. 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.15
用Kaiser窗方法设计一个台阶状滤波器. 代码: %% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...
随机推荐
- java实现数字转中文大写
package cn.aikang.ChineseC; import java.util.Scanner; /** * @Description: TODO(这里用一句话描述这个类的作用) * @Au ...
- [转]关于Repository模式
原文链接:关于Repository模式 定义(来自Martin Fowler的<企业应用架构模式>): Mediates between the domain and data mappi ...
- Java 基础 - 内存泄露Memory leak & 内存溢出Out of memory
内存泄露 & 内存溢出 关系 https://www.cnblogs.com/panxuejun/p/5883044.html 内存泄露的6种情况: https://blog.csdn.net ...
- thinkphp 闭包支持
闭包定义 我们可以使用闭包的方式定义一些特殊需求的路由,而不需要执行控制器的操作方法了,例如: 'URL_ROUTE_RULES'=>array( 'test' => function() ...
- 最大流任务调度+离散化——hdu2883
思想就是把时间段离散化,然后用个点来表示一段时间 #include<iostream> #include<cstdio> #include<cstring> #in ...
- JavaScript——基本语法
单词掌握 BOM 浏览器对象模型 DOM 文档对象模型 document 文档 break 中断 continue 继续 1.js脚本位置 通常可以在三个地方编写js脚本代码,一是在网页文件的< ...
- duilib库分析2.第一篇UIManager
DUiLib 源码分析 ——以UiLib 1.01版为分析目标--------------------------------------------------------------------- ...
- VS2010-MFC(图形图像:GDI对象之画刷CBrush)
转自:http://www.jizhuomi.com/software/248.html 上一节讲的是画笔CPen的用法,前面也说了,GDI对象中最常用的就是画笔和画刷,本节就讲讲画刷CBrush. ...
- centos下 安装python相关
centos 安装python相关 python3 https://blog.csdn.net/tanxiaob/article/details/78725301 yum -y install zli ...
- 网络安全系列 之 SQL注入学习总结
目录 1. sql注入概述 2. sql注入测试工具 3. sql注入防御方法 3.1 问题来源 3.2 防御方法 4. SQL注入防御举例 4.1 使用JDBC时,SQL语句进行了拼接 4.2 使用 ...