吴裕雄 python 机器学习——半监督学习LabelSpreading模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import metrics
from sklearn import datasets
from sklearn.semi_supervised.label_propagation import LabelSpreading def load_data():
'''
加载数据集
'''
digits = datasets.load_digits()
###### 混洗样本 ########
rng = np.random.RandomState(0)
indices = np.arange(len(digits.data)) # 样本下标集合
rng.shuffle(indices) # 混洗样本下标集合
X = digits.data[indices]
y = digits.target[indices]
###### 生成未标记样本的下标集合 ####
# 只有 10% 的样本有标记
n_labeled_points = int(len(y)/10)
# 后面 90% 的样本未标记
unlabeled_indices = np.arange(len(y))[n_labeled_points:]
return X,y,unlabeled_indices #半监督学习LabelSpreading模型
def test_LabelSpreading(*data):
X,y,unlabeled_indices=data
y_train=np.copy(y) # 必须拷贝,后面要用到 y
y_train[unlabeled_indices]=-1 # 未标记样本的标记设定为 -1
clf=LabelSpreading(max_iter=100,kernel='rbf',gamma=0.1)
clf.fit(X,y_train)
### 获取预测准确率
predicted_labels = clf.transduction_[unlabeled_indices] # 预测标记
true_labels = y[unlabeled_indices] # 真实标记
print("Accuracy:%f"%metrics.accuracy_score(true_labels,predicted_labels))
# 或者 print("Accuracy:%f"%clf.score(X[unlabeled_indices],true_labels)) # 获取半监督分类数据集
data=load_data()
# 调用 test_LabelSpreading
test_LabelSpreading(*data)
def test_LabelSpreading_rbf(*data):
'''
测试 LabelSpreading 的 rbf 核时,预测性能随 alpha 和 gamma 的变化
'''
X,y,unlabeled_indices=data
# 必须拷贝,后面要用到 y
y_train=np.copy(y)
# 未标记样本的标记设定为 -1
y_train[unlabeled_indices]=-1 fig=plt.figure()
ax=fig.add_subplot(1,1,1)
alphas=np.linspace(0.01,1,num=10,endpoint=True)
gammas=np.logspace(-2,2,num=50)
# 颜色集合,不同曲线用不同颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
## 训练并绘图
for alpha,color in zip(alphas,colors):
scores=[]
for gamma in gammas:
clf=LabelSpreading(max_iter=100,gamma=gamma,alpha=alpha,kernel='rbf')
clf.fit(X,y_train)
scores.append(clf.score(X[unlabeled_indices],y[unlabeled_indices]))
ax.plot(gammas,scores,label=r"$\alpha=%s$"%alpha,color=color) ### 设置图形
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_xscale("log")
ax.legend(loc="best")
ax.set_title("LabelSpreading rbf kernel")
plt.show() # 调用 test_LabelSpreading_rbf
test_LabelSpreading_rbf(*data)
def test_LabelSpreading_knn(*data):
'''
测试 LabelSpreading 的 knn 核时,预测性能随 alpha 和 n_neighbors 的变化
'''
X,y,unlabeled_indices=data
# 必须拷贝,后面要用到 y
y_train=np.copy(y)
# 未标记样本的标记设定为 -1
y_train[unlabeled_indices]=-1 fig=plt.figure()
ax=fig.add_subplot(1,1,1)
alphas=np.linspace(0.01,1,num=10,endpoint=True)
Ks=[1,2,3,4,5,8,10,15,20,25,30,35,40,50]
# 颜色集合,不同曲线用不同颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
## 训练并绘图
for alpha,color in zip(alphas,colors):
scores=[]
for K in Ks:
clf=LabelSpreading(kernel='knn',max_iter=100,n_neighbors=K,alpha=alpha)
clf.fit(X,y_train)
scores.append(clf.score(X[unlabeled_indices],y[unlabeled_indices]))
ax.plot(Ks,scores,label=r"$\alpha=%s$"%alpha,color=color) ### 设置图形
ax.set_xlabel(r"$k$")
ax.set_ylabel("score")
ax.legend(loc="best")
ax.set_title("LabelSpreading knn kernel")
plt.show() # 调用 test_LabelSpreading_knn
test_LabelSpreading_knn(*data)
吴裕雄 python 机器学习——半监督学习LabelSpreading模型的更多相关文章
- 吴裕雄 python 机器学习——半监督学习标准迭代式标记传播算法LabelPropagation模型
import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...
- 吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——密度聚类DBSCAN模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——支持向量机线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——分类决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——回归决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
随机推荐
- PIE-SDK For C++栅格数据集的读取
1.功能简介 栅格数据包含很多信息,在数据的运用中需要对数据的信息进行读取,目前PIE SDK支持多种数据格式的数据读取,下面对栅格数据格式的数据读取功能进行介绍. 2.功能实现说明 2.1 实现思路 ...
- idea AutoWired 报红
- PHP实现导出CSV文件
在做导出一个信息表为excel文件这个功能完成之后,自己用得好好的,但是到HR那边就告诉我导出的文件无法用她电脑上的office打开,心想,兼容没做好,想问下她的版本号,结果半天没回复消息.我老大来了 ...
- GCC中 -I、-L、-l 选项的作用
在makefile中经常会看到这些选项,gcc默认会在程序当前目录.path路径中查找所需要的材料 如何给gcc添加我们自己的原材料(头文件,库等) -I (注意是大写的i) 给gcc添加自定义的头文 ...
- Linq To Sqlite使用心得
若要使用Linq To Sqlite类库,可以安装Devart Linq Connect Model,如图: 新建这个Model就可以和Linq To Sql一样使用Linq模型,下载地址:https ...
- 全排列(dfs-有重复数字)
给出一个字符串S(可能有重复的字符),按照字典序从小到大,输出S包括的字符组成的所有排列.例如:S = "1312", 输出为: 1123 1132 1213 1231 131 ...
- 16day 路径信息系列
../ 上一级目录 ./ 当前路径 ~ 返回到家目录 - 两个目录之间进行快速切换 An argument of - is equivalent to $OLDPWD(环境变量) 补充说明: [roo ...
- 题解【洛谷P1433】吃奶酪
题面 看到数据范围那么小,一眼状压\(\text{DP}\). 设\(dp[i][s]\)表示从\(i\)出发,走过的点的集合为\(s\)的最小距离. 不难推出转移方程(\(dis(i,j)\)为\( ...
- kao shi di er ti(还没有订正)
// 离散化点 思路应该是对的 吧 但没时间去检查编译上的错误 #include <bits/stdc++.h> using namespace std; ; #define ri reg ...
- Oracle VM VirtualBox - ping不通虚拟机
问题描述 用Oracle VM VirtualBox创建虚拟机后,本机电脑ping不通虚拟机 解决方案 https://www.cnblogs.com/ranrongzhen/p/6958485.ht ...