题目链接

题目大意

$$F[i]=F[i-1]+F[i-2]\ (\ F[1]=1\ ,\ F[2]=1\ )$$

$$T[i]=F[1]+2F[2]+3F[3]+...+nF[n]$$

求$T[n]\ mod\ m$

$n,m<=2^{31}-1$

这题的递推式推导有点神仙,完全想不到多用两个数组来形成递推式。研究了一下一本通上面的两个辅助数组的用途然后才会推出来这个转移矩阵

还是太菜了

题解

由题目可得

 $$F[i]=F[i-1]+F[i-2]\ (\ F[1]=1\ ,\ F[2]=1\ )$$

$$T[i]=F[1]+2F[2]+3F[3]+...+nF[n]$$

然而$T[i]$并不可以形成递推式,所以可以设

$$nS[i]=nF[1]+nF[2]+nF[3]+...+nF[n]$$

\begin{align*}
p[i]&=nS[i]-T[i]\\
&=(n-1)F[1]+(n-2)F[2]+...+F[n]\\
&=p[i-1]+s[i-1]
\end{align*}

这个推导可以把$p[i-1]$和$S[i-1]$以及$p[i]$展开来,就可以很好理解为什么可以这样子化成递推式了

于是我们就得到了一个递推式

 $$p[i]=p[i-1]+s[i-1]$$

而答案即为$T[n]=nS[n]-p[N]$

有了递推式就可以使用矩阵乘法优化:

转移矩阵随便推推就出来了,也不难推

$$\left[
\begin {matrix}
p[i]\\
S[i]\\
F[i]\\
F[i-1]
\end {matrix}
\right]
*
\left[
\begin{matrix}
1&1&0&0\\
0&1&1&0\\
0&0&1&1\\
0&0&1&0
\end{matrix}
\right]
=
\left[
\begin{matrix}
p[i+1]\\
S[i+1]\\
F[i+1]\\
F[i]
\end{matrix}
\right]$$

然后就是套板子了

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <cmath>
#include <set>
#include <map> using namespace std ; #define I_int int
inline I_int read() {
I_int x = , f = ; char c = getchar() ;
while( c < '' || c > '' ) {
if( c == '-' ) f = - ;
c = getchar() ;
}
while( c >= '' && c <= '' ) {
x = x * + c -'' ;
c = getchar() ;
}
return x * f ;
}
#undef I_int #define ll long long
#define inf 0x3f3f3f3f
#define in(a) a = read()
#define out(a) printf( "%d " , a )
#define outn(a) printf( "%d\n" , a )
#define N 100010 ll mod ;
struct matrix {
ll m[ ][ ] ;
matrix() { memset( m , , sizeof( m ) ) ; }
ll *operator[] ( ll a ) { return m[ a ] ; }
matrix operator * ( matrix &x ) {
matrix ans ;
memset( ans.m , , sizeof( ans.m ) ) ;
for( int i = ; i < ; i ++ ) {
for( int j = ; j < ; j ++ ) {
for( int k = ; k < ; k ++ ) {
ans[ i ][ j ] = ( ans[ i ][ j ] + m[ i ][ k ] * x[ k ][ j ] % mod ) % mod ;
}
}
}
return ans ;
}
} A , B ; int n = read() ; void init() {
A[][]=A[][]=A[][]=A[][]=A[][]=A[][]=A[][]=;
B[][]=B[][]=B[][]=;
} matrix power( ll p ) {
matrix ans , base = A ;
for( int i = ; i < ; i ++ ) ans[ i ][ i ] = ;
while( p ) {
if( p & ) ans = ans * base ;
base = base * base ;
p >>= ;
}
return ans ;
} int main() {
scanf( "%lld" , &mod ) ;
init() ;
A = power( n - ) ;
matrix ans = A * B ;
printf( "%lld\n" , (n*ans[][]-ans[][]+mod)%mod ) ;
}

LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci的更多相关文章

  1. LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci 题解

    题目传送门 如果之前推过斐波那契数列前缀和就更好做(所以题目中给出了). 斐波那契数列前缀和题目链接 先来推一下斐波那契数列前缀和: \[\sum\limits_{i=1}^nf(i) \] 其中 \ ...

  2. LOJ#10064. 「一本通 3.1 例 1」黑暗城堡

    LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...

  3. LOJ #10131 「一本通 4.4 例 2」暗的连锁

    LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...

  4. Loj 10115 「一本通 4.1 例 3」校门外的树 (树状数组)

    题目链接:https://loj.ac/problem/10115 题目描述 原题来自:Vijos P1448 校门外有很多树,学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的 ...

  5. LOJ#10065. 「一本通 3.1 例 2」北极通讯网络

    题目链接:https://loj.ac/problem/10065 题目描述 原题来自:Waterloo University 2002 北极的某区域共有 nnn 座村庄,每座村庄的坐标用一对整数 ( ...

  6. LOJ#10106. 「一本通 3.7 例 2」单词游戏

    题目链接:https://loj.ac/problem/10106 题目描述 来自 ICPC CERC 1999/2000,有改动. 有 NNN 个盘子,每个盘子上写着一个仅由小写字母组成的英文单词. ...

  7. LOJ #10132. 「一本通 4.4 例 3」异象石

    题目地址 LOJ 题解 神仙思路.思路参考自<算法竞赛进阶指南>. 考虑维护dfs序中相邻两个石头的距离,那么每次?的答案就是sum/2(首尾算相邻) 然后维护一下拿个平衡树/set维护一 ...

  8. LOJ 10138 -「一本通 4.5 例 1」树的统计

    树链剖分模板题,详见这篇博客.

  9. LOJ 10155 - 「一本通 5.2 例 3」数字转换

    前言 从现在开始,这个博客要写一些题解了.起初,开这个博客只是好玩一样,没事就写写CSS.JS,然后把博客前端搞成了现在这个样子.以前博客只是偶尔记录一些东西,刷题也从来不记录,最近受一些学长的影响, ...

随机推荐

  1. 不再以讹传讹,GET和POST的真正区别(转)

    add by zhj:按照restful的定义,GET是用于获取记录(幂等),POST用于创建记录(不幂等).GET也能带消息体?这个我没试过,文中说用浏览器发GET请求 是没法带的.另外,在< ...

  2. gh-ost安装

    下载 : https://github.com/github/gh-ost/releases/tag/v1.0.28 先安装Go语言: sudo yum install golang 将gh-ost文 ...

  3. java读取resource目录下的配置文件

    java读取resource目录下的配置文件 1:配置resource目录 下的文件 host: 127.0.0.1 port: 9300 2:读取    / 代表resource目录 InputSt ...

  4. [sql]mysql管理手头手册,多对多sql逻辑

    各类dbms排名 cs模型 mysql字符集设置 查看存储引擎,字符集 show variables like '%storage_engine%'; show VARIABLES like '%ma ...

  5. (转)找回Git中丢失的Commit

    总结:更新代码前一定要先将本地修改的文件存到本地git仓库.今天脑残直接更新了远程仓库代码导入今天写的代码...... @[git|commit|reflog] 在使用Git的过程中,有时候会因为一些 ...

  6. (转载)【cocos2dx 3.x Lua] 注册事件函数详解

    出处: http://www.2cto.com/kf/201409/338235.html coocs2dx 版本 3.1.1 registerScriptTouchHandler 注册触屏事件 re ...

  7. linux mail 发送邮件附件

    在很多场景中我们会使用Shell命令来发送邮件,而且我们还可能在邮件里面添加附件,本文将介绍使用Shell命令发送带附件邮件的几种方式,希望对大家有所帮助. 文章目录 1 使用mail命令 2 使用m ...

  8. Android adb.exe程序启动不起来处理方法

    经常遇到 Please ensure that adb is correctly located at 'D:\java\sdk\platform-tools\adb.exe' and can be ...

  9. Android弹性滑动的三种实现方式

    引言 上一篇文章我们介绍了实现弹性滑动的三种方式,但仅仅是给出了代码片段和方法理论.今天我们结合一个具体的例子来谈一下如何使用这三种方法来实现弹性滑动.今天我们的例子是仿IOS的下拉操作,我们知道An ...

  10. Java缓存学习之五:spring 对缓存的支持

    (注意标题,Spring对缓存的支持 这里不单单指Ehcache ) 从3.1开始,Spring引入了对Cache的支持.其使用方法和原理都类似于Spring对事务管理的支持.Spring Cache ...