深度拾遗(06) - 1X1卷积/global average pooling
什么是1X1卷积
11的卷积就是对上一层的多个feature channels线性叠加,channel加权平均。
只不过这个组合系数恰好可以看成是一个11的卷积。这种表示的好处是,完全可以回到模型中其他常见NN的框架下,不用定义新的层。
比如上一层通过100个卷积核得到了 W H * 100的数据,进行10个1X1卷积后得到 W * H * 10 的数据,它是对每个features channel像素点进行累计放缩。
为什么要用这个?
通过这样的方式,通道之间的信息交互,卷积核通道也可以简单的升维降维。
当1*1卷积出现时,在大多数情况下它作用是升/降特征的维度,这里的维度指的是通道数(厚度),而不改变图片的宽和高。
平均池化是针对每个feature map的平均操作,没有通道间的交互,而1×1卷积是对通道的操作,在通道的维度上进行线性组合
feature map之间的线性组合,特征的高度抽象过程。这一过程视为由线性变换为非线性,提高抽象程度。
1.维度升降主要于conv层的channel设置有关,实际于kernel_size大小无关;即实际中我设置的卷积核为1x1,目的更可能是为了降低参数个数,减少训练成本;
2.加入非线性。在NIN中其加入了1x1的conv层,由传统的conv升级为mlpconv的转变,使之由单纯的线性变换,变为复杂的feature map之间的线性组合,从而实现特征的高度抽象过程。这一过程视为由线性变换为非线性,提高抽象程度。而非加入激活函数的作用。
global average pooling
用来解决全连接的问题,其主要是是将最后一层的特征图进行整张图的一个均值池化,形成一个特征点,将这些特征点组成最后的特征向量进行softmax中进行计算。
例如:最后的一层的数据是10个66的特征图,global average pooling是将每一张特征图计算所有像素点的均值,输出一个数据值,这样10 个特征图就会输出10个数据点,将这些数据点组成一个110的向量的话,就成为一个特征向量,就可以送入到softmax的分类中计算了
深度拾遗(06) - 1X1卷积/global average pooling的更多相关文章
- 深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构 ...
- Network in Network(2013),1x1卷积与Global Average Pooling
目录 写在前面 mlpconv layer实现 Global Average Pooling 网络结构 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 <Net ...
- 深度学习基础系列(十)| Global Average Pooling是否可以替代全连接层?
Global Average Pooling(简称GAP,全局池化层)技术最早提出是在这篇论文(第3.2节)中,被认为是可以替代全连接层的一种新技术.在keras发布的经典模型中,可以看到不少模型甚至 ...
- Global Average Pooling Layers for Object Localization
For image classification tasks, a common choice for convolutional neural network (CNN) architecture ...
- (原)CNN中的卷积、1x1卷积及在pytorch中的验证
转载请注明处处: http://www.cnblogs.com/darkknightzh/p/9017854.html 参考网址: https://pytorch.org/docs/stable/nn ...
- 深度学习面试题10:二维卷积(Full卷积、Same卷积、Valid卷积、带深度的二维卷积)
目录 二维Full卷积 二维Same卷积 二维Valid卷积 三种卷积类型的关系 具备深度的二维卷积 具备深度的张量与多个卷积核的卷积 参考资料 二维卷积的原理和一维卷积类似,也有full卷积.sam ...
- 1x1卷积
你可能会想为什么有人会用1x1卷积,因为它关注的不是一块像素,而是一个像素,图1 图1 我们看看传统的卷积,它基本上是运行在一个小块图像上的小分类器,但仅仅是个线性分类器.图2 图2 如果你在中间加一 ...
- Spark UDAF实现举例 -- average pooling
目录 1.UDAF定义 2.向量平均(average pooling) 2.1 average的并行化 2.2 代码实现 2.3 使用 参考 1.UDAF定义 spark中的UDF(UserDefin ...
- 深度学习中卷积层和pooling层的输出计算公式(转)
原文链接:https://blog.csdn.net/yepeng_xinxian/article/details/82380707 1.卷积层的输出计算公式class torch.nn.Conv2d ...
随机推荐
- 【转】linux shell 逻辑运算符、逻辑表达式详解
shell的逻辑运算符 涉及有以下几种类型,因此只要适当选择,可以解决我们很多复杂的判断,达到事半功倍效果. 一.逻辑运算符 逻辑卷标 表示意思 1. 关于档案与目录的侦测逻辑卷标! -f 常用!侦测 ...
- 2017-12-30-如何彻底清除现存GIT仓库的大量提交历史
layout: post title: 2017-12-30-如何彻底清除现存GIT仓库的大量提交历史 key: 20171230 tags: GIT 版本管理 问答 modify_date: 201 ...
- C# 类型基础(下)
前面介绍了基本的类型,接下来我们讲讲类型的转换 值类型的两种表现形式:未装箱和已装箱 ,而引用类型总是处于装箱形式 int count = 10; object obj = count; 装箱:值类型 ...
- mysql(4)—— 表连接查询与where后使用子查询的性能分析。
子查询就是在一条查询语句中还有其它的查询语句,主查询得到的结果依赖于子查询的结果. 子查询的子语句可以在一条sql语句的FROM,JOIN,和WHERE后面,本文主要针对在WHERE后面使用子查询与表 ...
- html的标签
<a>:anchor 定义锚 <abbr>:abbreviation 定义缩写 <acronym>: 定义只取消首字母的缩写 <address>:定义地 ...
- 如何让oracle DB、监听和oem开机启动(dbstart)
如何让oracle DB.监听和oem开机启动(dbstart) 让oracle DB.监听和oem开机启动(dbstart) Oracle提供了伴随操作系统自动重启的功能,在Windows中,可以修 ...
- 【转】TCP/IP和SOCKET的区别
要写网络程序就必须用Socket,这是程序员都知道的.而且,面试的时候,我们也会问对方会不会Socket编程?一般来说,很多人都会说,Socket编程基本就是listen,accept以及send,w ...
- SqlServer varchar数据中类似于1.1.1.1这种值的排序方法
select * from 表名order by Convert(int,left(列名,charindex('.',列名+'.')-1)) asc, 列名asc charindex('.',列名) ...
- Flask-Moment----探索
前言: Flask-Moment在所有的flask扩展中算是相对简单的一个了,但是还是有很多需要理解的地方.那么今天就跟着笔者一起,来学习一下flask-moment在flask项目中的应用. 首先 ...
- php扩展开发实战教程(1)
我的开发环境: Ubuntu16.04 apt方式安装的php5.6, apache,mysql等 由于我的本机用的是apt方式安装的php,所以我这里从头开始用最精简的方式,编译安装一个php5.4 ...