1.前向传播:

template <typename Dtype>
void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[]->cpu_data();
Dtype* top_data = top[]->mutable_cpu_data();
Dtype* scale_data = scale_.mutable_cpu_data();
int channels = bottom[]->shape(softmax_axis_);
int dim = bottom[]->count() / outer_num_; //dim表示要分类的类别数,count()得到的是总共的输入Blob数,outer_num_得到的是是每一类的Blob数
caffe_copy(bottom[]->count(), bottom_data, top_data); //先将输入拷贝到输出缓冲区
// We need to subtract the max to avoid numerical issues, compute the exp,
// and then normalize,减去最大值,避免数值问题,计算指数,归一化
for (int i = ; i < outer_num_; ++i) {
// 初始化scale_的data域为第一个平面,其中scale用来存放临时计算结果
caffe_copy(inner_num_, bottom_data + i * dim, scale_data);
for (int j = ; j < channels; j++) {
for (int k = ; k < inner_num_; k++) {
scale_data[k] = std::max(scale_data[k],
bottom_data[i * dim + j * inner_num_ + k]);
}
}
// 输出缓冲区减去最大值
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_,
, -., sum_multiplier_.cpu_data(), scale_data, ., top_data);
// exponentiation
caffe_exp<Dtype>(dim, top_data, top_data);
// sum after exp
caffe_cpu_gemv<Dtype>(CblasTrans, channels, inner_num_, .,
top_data, sum_multiplier_.cpu_data(), ., scale_data);
// division
for (int j = ; j < channels; j++) {
caffe_div(inner_num_, top_data, scale_data, top_data);
top_data += inner_num_;
}
}
}

一般的我们有top[0]来存放数据,top[1]来存放标签(对于bottom也一样)

2.反向传播:

template <typename Dtype>
void SoftmaxLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
const Dtype* top_diff = top[]->cpu_diff();
const Dtype* top_data = top[]->cpu_data();
Dtype* bottom_diff = bottom[]->mutable_cpu_diff();
Dtype* scale_data = scale_.mutable_cpu_data();
int channels = top[]->shape(softmax_axis_);
int dim = top[]->count() / outer_num_;
caffe_copy(top[]->count(), top_diff, bottom_diff); //先用top_diff初始化bottom_diff
for (int i = ; i < outer_num_; ++i) {
// 计算top_diff和top_data的点积,然后从bottom_diff中减去该值
for (int k = ; k < inner_num_; ++k) {
scale_data[k] = caffe_cpu_strided_dot<Dtype>(channels,
bottom_diff + i * dim + k, inner_num_,
top_data + i * dim + k, inner_num_);
}
// 减值
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_, ,
-., sum_multiplier_.cpu_data(), scale_data, ., bottom_diff + i * dim);
}
// 逐点相乘
caffe_mul(top[]->count(), bottom_diff, top_data, bottom_diff);
}

解释:

补充:最后部分,Zi!=Zj和Zi=Zj部分写反了,大家注意一下~

caffe中 softmax 函数的前向传播和反向传播的更多相关文章

  1. 机器学习(ML)八之正向传播、反向传播和计算图,及数值稳定性和模型初始化

    正向传播 正向传播的计算图 通常绘制计算图来可视化运算符和变量在计算中的依赖关系.下图绘制了本节中样例模型正向传播的计算图,其中左下角是输入,右上角是输出.可以看到,图中箭头方向大多是向右和向上,其中 ...

  2. 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播

    下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...

  3. caffe中的前向传播和反向传播

    caffe中的网络结构是一层连着一层的,在相邻的两层中,可以认为前一层的输出就是后一层的输入,可以等效成如下的模型 可以认为输出top中的每个元素都是输出bottom中所有元素的函数.如果两个神经元之 ...

  4. caffe中softmax源码阅读

    (1) softmax函数                                      (1) 其中,zj 是softmax层的bottom输入, f(zj)是softmax层的top输 ...

  5. BP原理 - 前向计算与反向传播实例

    Outline 前向计算 反向传播 很多事情不是需要聪明一点,而是需要耐心一点,踏下心来认真看真的很简单的. 假设有这样一个网络层: 第一层是输入层,包含两个神经元i1 i2和截距b1: 第二层是隐含 ...

  6. 反向传播算法(前向传播、反向传播、链式求导、引入delta)

    参考链接: 一文搞懂反向传播算法

  7. caffe中softmax loss源码阅读

    (1) softmax loss <1> softmax loss的函数形式为:     (1) zi为softmax的输入,f(zi)为softmax的输出. <2> sof ...

  8. 前向传播和反向传播实战(Tensor)

    前面在mnist中使用了三个非线性层来增加模型复杂度,并通过最小化损失函数来更新参数,下面实用最底层的方式即张量进行前向传播(暂不采用层的概念). 主要注意点如下: · 进行梯度运算时,tensorf ...

  9. caffe中python接口的使用

    下面是基于我自己的接口,我是用来分类一维数据的,可能不具通用性: (前提,你已经编译了caffe的python的接口) 添加 caffe塻块的搜索路径,当我们import caffe时,可以找到. 对 ...

随机推荐

  1. 【BZOJ4671】异或图(斯特林反演)

    [BZOJ4671]异或图(斯特林反演) 题面 BZOJ Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出 ...

  2. cf379F New Year Tree (树的直径+倍增lca)

    可以证明,如果合并两棵树,新的直径的端点一定是原来两树中直径的端点 可以把新加两个点的操作看成是把两个只有一个点的树合并到原来的树上,然后用其中的一个点去和原来树上的直径两端点更新直径就可以了 #in ...

  3. N皇后问题(DFS)

    题目:在N*N的国际象棋棋盘上放置N个皇后彼此不受攻击(即在棋盘的任一行,任一列和任意对角线上不能放置2个皇后),求解所有摆放方案的总数. 样例输入: 1 8 样例输出: 1 92 解题思路:由于皇后 ...

  4. SDL_BlitSurface

    SDL_BlitSurface Use this function to perform a fast surface copy to a destination surface. Contents ...

  5. Some Interesting Problems(持续更新中)

    这种题目详解,是“一日一测”与“一句话题解”栏目所无法覆盖的,可能是考试用题,也可能是OJ题目.常常非常经典,可以见微知著.故选其精华,小列如下. T1:fleet 给定一个序列,询问[L,R]间有多 ...

  6. mysql存储过程和常用流程控制

    /* 该代码是创建了一个名叫"p4"的存储过程并设置了s1,s2,s3两个int型一个varchar型参数,还可以是其他数据类型,内部创建了x1,x2两个变量 DELIMITER是 ...

  7. Linux网络协议栈(一)——Socket入门(2)

    转自: http://www.cnblogs.com/hustcat/archive/2009/09/17/1568765.html 3.套接字的实现套接字最先是在UNIX的BSD版本实现的,所以也叫 ...

  8. django在读取数据库时未筛选到符合条件的记录会报错

    (1)报错情况如下: DoesNotExist: Publisher matching query does not exist.   (2)处理方法: try:    p = Publisher.o ...

  9. eclipse中编辑properties文件无法看到中文

    如果在eclipse中编辑properties文件无法看到中文则参考“Eclipse开发环境配置-indigo.docx”添加propedit插件.

  10. 20190313 org.apache.commons.lang3.builder.EqualsBuilder的两种典型用法

    org.apache.commons.lang3.builder.EqualsBuilder的两种典型用法 public boolean equals(Object obj) { if (obj == ...