代码:

%% ------------------------------------------------------------------------
%% Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf(' <DSP using MATLAB> Problem 8.21 \n\n'); banner();
%% ------------------------------------------------------------------------ Fp = 3.2; % analog passband freq in kHz
Fs = 3.8; % analog stopband freq in kHz
fs = 8; % sampling rate in kHz % -------------------------------
% ω = ΩT = 2πF/fs
% Digital Filter Specifications:
% -------------------------------
%wp = 2*pi*Fp/fs; % digital passband freq in rad/sec
wp = Fp;
%ws = 2*pi*Fs/fs; % digital stopband freq in rad/sec
ws = Fs;
Rp = 0.5; % passband ripple in dB
As = 45; % stopband attenuation in dB Ripple = 10 ^ (-Rp/20) % passband ripple in absolute
Attn = 10 ^ (-As/20) % stopband attenuation in absolute % Analog prototype specifications: Inverse Mapping for frequencies
T = 1; % set T = 1
OmegaP = wp/T; % prototype passband freq
OmegaS = ws/T; % prototype stopband freq % Analog Chebyshev-1 Prototype Filter Calculation:
[cs, ds] = afd_chb1(OmegaP, OmegaS, Rp, As); % Calculation of second-order sections:
fprintf('\n***** Cascade-form in s-plane: START *****\n');
[CS, BS, AS] = sdir2cas(cs, ds)
fprintf('\n***** Cascade-form in s-plane: END *****\n'); % Calculation of Frequency Response:
[db_s, mag_s, pha_s, ww_s] = freqs_m(cs, ds, 8); % Calculation of Impulse Response:
[ha, x, t] = impulse(cs, ds); % Impulse Invariance Transformation:
[b, a] = imp_invr(cs, ds, T); [C, B, A] = dir2par(b, a) % Calculation of Frequency Response:
[db, mag, pha, grd, ww] = freqz_m(b, a); %% -----------------------------------------------------------------
%% Plot
%% -----------------------------------------------------------------
figure('NumberTitle', 'off', 'Name', 'Problem 8.21 Analog Chebyshev-I lowpass')
set(gcf,'Color','white');
M = 1.0; % Omega max subplot(2,2,1); plot(ww_s, mag_s/T); grid on; %axis([-10, 10, 0, 1.2]);
xlabel(' Analog frequency in kHz units'); ylabel('|H|'); title('Magnitude in Absolute');
set(gca, 'XTickMode', 'manual', 'XTick', [-8, -3.8, -3.2, 0, 3.2, 3.8, 8]);
set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.006, 0.94, 1]); subplot(2,2,2); plot(ww_s, db_s); grid on; %axis([0, M, -50, 10]);
xlabel('Analog frequency in kHz units'); ylabel('Decibels'); title('Magnitude in dB ');
set(gca, 'XTickMode', 'manual', 'XTick', [-8, -3.8, 0, 3.2, 3.8, 8]);
set(gca, 'YTickMode', 'manual', 'YTick', [-45, -1, 0]);
set(gca,'YTickLabelMode','manual','YTickLabel',['45';' 1';' 0']); subplot(2,2,3); plot(ww_s, pha_s/pi); grid on; axis([-10, 10, -1.2, 1.2]);
xlabel('Analog frequency in kHz nuits'); ylabel('radians'); title('Phase Response');
set(gca, 'XTickMode', 'manual', 'XTick', [-8, -3.8, 0, 3.2, 3.8, 8]);
set(gca, 'YTickMode', 'manual', 'YTick', [-1:0.5:1]); subplot(2,2,4); plot(t, ha); grid on; %axis([0, 30, -0.05, 0.25]);
xlabel('time in seconds'); ylabel('ha(t)'); title('Impulse Response'); figure('NumberTitle', 'off', 'Name', 'Problem 8.21 Digital Chebyshev-I lowpass')
set(gcf,'Color','white');
M = 2; % Omega max subplot(2,2,1); plot(ww/pi, mag); axis([0, M, 0, 1.2]); grid on;
xlabel(' frequency in \pi units'); ylabel('|H|'); title('Magnitude Response');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.8, 0.95, M]);
set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0056, 0.9441, 1]); subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on;
xlabel('frequency in \pi nuits'); ylabel('radians in \pi units'); title('Phase Response');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.8, 0.95, M]);
set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]); subplot(2,2,3); plot(ww/pi, db); axis([0, M, -30, 10]); grid on;
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude in dB ');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.8, 0.95, M]);
set(gca, 'YTickMode', 'manual', 'YTick', [-60, -45, -1, 0]);
set(gca,'YTickLabelMode','manual','YTickLabel',['60';'45';' 1';' 0']); subplot(2,2,4); plot(ww/pi, grd); grid on; %axis([0, M, 0, 35]);
xlabel('frequency in \pi units'); ylabel('Samples'); title('Group Delay');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.8, 0.95, M]);
%set(gca, 'YTickMode', 'manual', 'YTick', [0:5:35]); figure('NumberTitle', 'off', 'Name', 'Problem 8.21 Pole-Zero Plot')
set(gcf,'Color','white');
zplane(b,a);
title(sprintf('Pole-Zero Plot'));
%pzplotz(b,a); % ----------------------------------------------
% Calculation of Impulse Response
% ----------------------------------------------
figure('NumberTitle', 'off', 'Name', 'Problem 8.21 Imp & Freq Response')
set(gcf,'Color','white');
t = [0:0.01:60]; subplot(2,1,1); impulse(cs,ds,t); grid on; % Impulse response of the analog filter
axis([0,60,-0.5,1.0]);hold on n = [0:1:60/T]; hn = filter(b,a,impseq(0,0,60/T)); % Impulse response of the digital filter
stem(n*T,hn); xlabel('time in sec'); title (sprintf('Impulse Responses T=%2d',T));
hold off % Calculation of Frequency Response:
[dbs, mags, phas, wws] = freqs_m(cs, ds, 2*pi/T); % Analog frequency s-domain [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a); % Digital z-domain %% -----------------------------------------------------------------
%% Plot
%% ----------------------------------------------------------------- subplot(2,1,2); plot(wws/(2*pi),mags/T,'b+', wwz/(2*pi*T),magz,'r'); grid on; xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude'); text(-0.8,0.15,'Analog filter'); text(0.6,1.05,'Digital filter');

  运行结果:

通带、阻带指标

模拟Chebyshev-1型低通系统函数,串联形式系数

脉冲响应不变法,转换成数字低通,系统函数直接形式系数

模拟Chebyshev-1型低通,幅度谱、相位谱和脉冲响应

数字Chebyshev-1型低通,幅度谱、相位谱和群延迟

《DSP using MATLAB》Problem 8.21的更多相关文章

  1. 《DSP using MATLAB》Problem 6.21

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  2. 《DSP using MATLAB》Problem 5.21

    证明: 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

  3. 《DSP using MATLAB》Problem 4.21

    快到龙抬头,居然下雪了,天空飘起了雪花,温度下降了近20°. 代码: %% -------------------------------------------------------------- ...

  4. 《DSP using MATLAB》Problem 3.21

    模拟信号经过不同的采样率进行采样后,得到不同的数字角频率,如下: 三种Fs,采样后的信号的谱 重建模拟信号,这里只显示由第1种Fs=0.01采样后序列进行重建,采用zoh.foh和spline三种方法 ...

  5. 《DSP using MATLAB》Problem 7.27

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  6. 《DSP using MATLAB》Problem 7.26

    注意:高通的线性相位FIR滤波器,不能是第2类,所以其长度必须为奇数.这里取M=31,过渡带里采样值抄书上的. 代码: %% +++++++++++++++++++++++++++++++++++++ ...

  7. 《DSP using MATLAB》Problem 7.24

    又到清明时节,…… 注意:带阻滤波器不能用第2类线性相位滤波器实现,我们采用第1类,长度为基数,选M=61 代码: %% +++++++++++++++++++++++++++++++++++++++ ...

  8. 《DSP using MATLAB》Problem 7.23

    %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output Info a ...

  9. 《DSP using MATLAB》Problem 7.16

    使用一种固定窗函数法设计带通滤波器. 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

随机推荐

  1. 论文阅读笔记---ShuffleNet V1

    01 ShuffleNet V1要解决什么问题 为算力有限的嵌入式场景下专门设计一个高效的神经网络架构. 02 亮点 使用了两个新的操作:pointwise group convolution和cha ...

  2. CSS Sprites(CSS图像拼合技术)教程、工具集合

    本集合是有一位国外设计师收集整合,并由 oncoding翻译成中文的,感谢他们的辛苦贡献.CSS Sprites技术在国外并不是什么新技术,只不过近两年(尤其08年开始)中国开始流行这个词,大家也开始 ...

  3. gcc 4步编译过程

    一. gcc编译过程  1. 预处理: 主要进行宏替换以及头文件的展开  gcc  -E   *.c  -o  *.i 2.  编译::编译生成汇编文件,会检查语法错误   gcc  -S   *.i ...

  4. JS函数 函数的作用,可以写一次代码,然后反复地重用这个代码。

    什么是函数 函数的作用,可以写一次代码,然后反复地重用这个代码. 如:我们要完成多组数和的功能. var sum; sum = 3+2; alert(sum); sum=7+8 ; alert(sum ...

  5. 随笔记录 grub引导故障修复 2019.8.7

    系统备份: [root@localhost ~]# mkdir /abc [root@localhost ~]# mount /dev/sdb1 /abc [root@localhost ~]# dd ...

  6. ES5数组扩展

    ES5给数组对象添加了一些方法, 常用的5个: 1. Array.prototype.indexOf(value) : 得到值在数组中的第一个下标 2. Array.prototype.lastInd ...

  7. Centos 6.5 python版本升级到2.7.8

    Centos6.5默认的 python版本是2.6 为了使用aliyuncli工具,直接用pip安装aliyuncli提示错误. 所以决定升级下python版本,但是yum依赖于python2.6,升 ...

  8. poj1363 Rails Central Europe 1997

    P.S.: 输出换行 三个方法 1.直接按照要求做 根据给的数,需要push,pop哪些数据,具有唯一性 数最多进栈一次,出栈一次 O(n) Source Code Problem: User: co ...

  9. [转]Nginx配置详解

    Nginx是lgor Sysoev为俄罗斯访问量第二的rambler.ru站点设计开发的.从2004年发布至今,凭借开源的力量,已经接近成熟与完善. Nginx功能丰富,可作为HTTP服务器,也可作为 ...

  10. vue+Iview+gulp 生成文档说明

    1.安装npm gulp相关插件 比如:gulp.gulp-concat.gulp-htmlmin.gulp-cssmin.gulp-cheerio.gulp-clean 2. 编写gulpfile. ...