HDU 2176 取(m堆)石子游戏 && HDU1850 Being a Good Boy in Spring Festivaly
HDU2176题意:
m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.
通过 SG定理 我们可以知道每一个数的SG值,等于这个数到达不了的前面数中的最小值。本题题意和尼姆博弈一样,即可以在一堆中任意个石子,所以也就是说每个数都可以到达前面经过的每一个数,所以每一个数的SG值就是它本身。又因为有好多堆石子,所以可以看作多个一堆石子的游戏,我们可以让n代表每一堆石子的数量,那么让所有堆的SG(n)相互异或得到的结果就是答案(这里只是用SG定义来证明了一下尼姆博弈的作法)
HDU2176题解:
如果给出的每一堆石子的总数n相互异或得到0,就证明这是一个必败态
那么做这一道题先判断一个全部异或后得到的是不是0,如果是0直接输出No
不是0的话,就要找方法使得一步操作过后局面变成必败态,变成必败态要是他们所以异或起来是0,而一个数和它自己异或就是0
所以我们可以从所有石子堆中找出来一个数,让它变成除自己外剩下所有值的异或值,这样全部异或起来就是0了
比如(用^代表异或):
(1 2 5) 1^2=3 ,那么我们可以从5中拿走2个石子,这样就变成了必败态
(1 6 9) 1^6=7,那么可以从9中拿走2个石子,这样也变成了必败态
代码:
1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 #include<math.h>
6 #include<stack>
7 #include<math.h>
8 using namespace std;
9 typedef long long ll;
10 const int maxn=1000005;
11 int v[maxn];
12 int main()
13 {
14 int n;
15 while(~scanf("%d",&n))
16 {
17 if(!n) break;
18 int flag=0;
19 for(int i=0;i<n;++i)
20 {
21 scanf("%d",&v[i]);
22 flag^=v[i];
23 }
24 if(!flag)
25 {
26 printf("No\n");
27 continue;
28 }
29 printf("Yes\n");
30 for(int i=0;i<n;++i)
31 {
32 if(v[i]>(flag^v[i]))
33 {
34 printf("%d %d\n",v[i],flag^v[i]);
35 }
36 }
37 }
38 return 0;
39 }
HDU1850题意:
和上一题和基本上一样,就是问你如果能赢,第一步拿石子有多少种方法
题解:
上一道题就是在判断从那一堆中拿石子,所以这一道题只需要稍微改变一下就可以了
代码:
1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 #include<math.h>
6 #include<stack>
7 #include<math.h>
8 using namespace std;
9 typedef long long ll;
10 const int maxn=1000005;
11 int v[maxn];
12 int main()
13 {
14 int n;
15 while(~scanf("%d",&n))
16 {
17 if(!n) break;
18 int flag=0;
19 for(int i=0;i<n;++i)
20 {
21 scanf("%d",&v[i]);
22 flag^=v[i];
23 }
24 int ans=0;
25 for(int i=0;i<n;++i)
26 {
27 if(v[i]>(flag^v[i])) ans++;
28 }
29 printf("%d\n",ans);
30 }
31 return 0;
32 }
HDU 2176 取(m堆)石子游戏 && HDU1850 Being a Good Boy in Spring Festivaly的更多相关文章
- HDU 2176 取(m堆)石子游戏(Nim)
取(m堆)石子游戏 题意: Problem Description m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,1 ...
- HDU 2176:取(m堆)石子游戏(Nim博弈)
取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- HDU 2176 取(m堆)石子游戏 (尼姆博奕)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2176 m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎 ...
- hdu 2176 取(m堆)石子游戏 (裸Nim)
题意: m堆石头,每堆石头个数:a[1]....a[m]. 每次只能在一堆里取,至少取一个. 最后没石子取者负. 先取者负输出NO,先取胜胜输出YES,然后输出先取者第1次取子的所有方法.如果从有a个 ...
- HDU 2176 取(m堆)石子游戏 —— (Nim博弈)
如果yes的话要输出所有情况,一开始觉得挺难,想了一下也没什么. 每堆的个数^一下,答案不是0就是先取者必胜,那么对必胜态显然至少存在一种可能性使得当前局势变成必败的.只要任意选取一堆,把这堆的数目变 ...
- HDU 2176 取(m堆)石子游戏 尼姆博弈
题目思路: 对于尼姆博弈我们知道:op=a[1]^a[2]--a[n],若op==0先手必败 一个简单的数学公式:若op=a^b 那么:op^b=a: 对于第i堆a[i],op^a[i]的值代表其余各 ...
- HDU 2176 取(m堆)石子游戏(尼姆博奕)
nim基础博弈 #include<stdio.h> #include<iostream> #include<cstring> #include<queue&g ...
- HDU 2177 取(2堆)石子游戏
取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- 杭电 2176 取(m堆)石子游戏(博弈)
取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
随机推荐
- Kubernetes K8S之kube-prometheus概述与部署
Kubernetes K8S之kube-prometheus概述与部署 主机配置规划 服务器名称(hostname) 系统版本 配置 内网IP 外网IP(模拟) k8s-master CentOS7. ...
- kubernets之服务重定向
一 服务的强大功能之处的其他表现 前面介绍的所有有关服务的说明,都是将集群内部的pod应用暴露出来提供外部客户端或者内部的客户端进行访问,但是服务的强大之处远远不止于此 服务甚至可以将集群外部的应用 ...
- java创建线程安全的类
如果一个对象想要被多个线程安全的并发访问,那么这个对象必须是或线程安全的或事实不可变的或由锁来保护的. 1.java监视器模式 大多数对象都是组合对象.当从头开始构建一个类,或者将多个非线程安全的类组 ...
- KeepAlive安装以及简单配置
操作系统:Centos7.3 一.依赖安装 首先安装相关依赖: yum install -y gcc openssl-devel popt-devel yum -y install libnl lib ...
- 利用JavaUDPSocket+多线程模拟实现一个简单的聊天室程序
对Socket的一点个人理解:Socket原意是指插座.家家户户都有五花八门的家用电器,但它们共用统一制式的插座.这样做的好处就是将所有家用电器的通电方式统一化,不需要大费周章地在墙壁上凿洞并专门接电 ...
- FLask的偏函数应用
偏函数 实际上,偏函数主要辅助原函数,作用其实和原函数差不多,不同的是,我们要多次调用原函数的时候,有些参数,我们需要多次手动的去提供值.而偏函数便可简化这些操作,减少函数调用,主要是将一个或多个参数 ...
- unity3D进阶
前言 在之前的例子中,我们都没有用到unity的精髓,例如地形系统.物理系统.粒子系统等,本文记录unity3D的进阶简单应用 前期准备 https://unity.cn/releases/full/ ...
- C++ 中assert断言函数的基本用法
在我们的实际开发过程之中,常常会出现一些隐藏得很深的BUG,或者是一些概率性发生的BUG,通常这些BUG在我们调试的过程中不会出现很明显的问题,但是如果我们将其发布,在用户的各种运行环境下,这些程序可 ...
- 【c++小知识】static用法浅析
一.前言 C++的关键字static分两种用法,在面向过程程序设计(c语言中的普通变量和函数)中的使用和在面向对象程序设计(c++中的类)中的使用 二.面向过程程序设计中的static(静态变量.静态 ...
- 9.5 自定义包和可见性 go mod
the-way-to-go_ZH_CN/09.5.md at master · Unknwon/the-way-to-go_ZH_CN https://github.com/Unknwon/the-w ...