HDU2176题意:

m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.

通过 SG定理 我们可以知道每一个数的SG值,等于这个数到达不了的前面数中的最小值。本题题意和尼姆博弈一样,即可以在一堆中任意个石子,所以也就是说每个数都可以到达前面经过的每一个数,所以每一个数的SG值就是它本身。又因为有好多堆石子,所以可以看作多个一堆石子的游戏,我们可以让n代表每一堆石子的数量,那么让所有堆的SG(n)相互异或得到的结果就是答案(这里只是用SG定义来证明了一下尼姆博弈的作法)

HDU2176题解:

如果给出的每一堆石子的总数n相互异或得到0,就证明这是一个必败态

那么做这一道题先判断一个全部异或后得到的是不是0,如果是0直接输出No

不是0的话,就要找方法使得一步操作过后局面变成必败态,变成必败态要是他们所以异或起来是0,而一个数和它自己异或就是0

所以我们可以从所有石子堆中找出来一个数,让它变成除自己外剩下所有值的异或值,这样全部异或起来就是0了

比如(用^代表异或):

(1 2 5)  1^2=3 ,那么我们可以从5中拿走2个石子,这样就变成了必败态

(1 6 9)  1^6=7,那么可以从9中拿走2个石子,这样也变成了必败态

代码:

 1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 #include<math.h>
6 #include<stack>
7 #include<math.h>
8 using namespace std;
9 typedef long long ll;
10 const int maxn=1000005;
11 int v[maxn];
12 int main()
13 {
14 int n;
15 while(~scanf("%d",&n))
16 {
17 if(!n) break;
18 int flag=0;
19 for(int i=0;i<n;++i)
20 {
21 scanf("%d",&v[i]);
22 flag^=v[i];
23 }
24 if(!flag)
25 {
26 printf("No\n");
27 continue;
28 }
29 printf("Yes\n");
30 for(int i=0;i<n;++i)
31 {
32 if(v[i]>(flag^v[i]))
33 {
34 printf("%d %d\n",v[i],flag^v[i]);
35 }
36 }
37 }
38 return 0;
39 }

HDU1850题意:

和上一题和基本上一样,就是问你如果能赢,第一步拿石子有多少种方法

题解:

上一道题就是在判断从那一堆中拿石子,所以这一道题只需要稍微改变一下就可以了

代码:

 1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 #include<math.h>
6 #include<stack>
7 #include<math.h>
8 using namespace std;
9 typedef long long ll;
10 const int maxn=1000005;
11 int v[maxn];
12 int main()
13 {
14 int n;
15 while(~scanf("%d",&n))
16 {
17 if(!n) break;
18 int flag=0;
19 for(int i=0;i<n;++i)
20 {
21 scanf("%d",&v[i]);
22 flag^=v[i];
23 }
24 int ans=0;
25 for(int i=0;i<n;++i)
26 {
27 if(v[i]>(flag^v[i])) ans++;
28 }
29 printf("%d\n",ans);
30 }
31 return 0;
32 }

HDU 2176 取(m堆)石子游戏 && HDU1850 Being a Good Boy in Spring Festivaly的更多相关文章

  1. HDU 2176 取(m堆)石子游戏(Nim)

    取(m堆)石子游戏 题意: Problem Description m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,1 ...

  2. HDU 2176:取(m堆)石子游戏(Nim博弈)

    取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  3. HDU 2176 取(m堆)石子游戏 (尼姆博奕)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2176 m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎 ...

  4. hdu 2176 取(m堆)石子游戏 (裸Nim)

    题意: m堆石头,每堆石头个数:a[1]....a[m]. 每次只能在一堆里取,至少取一个. 最后没石子取者负. 先取者负输出NO,先取胜胜输出YES,然后输出先取者第1次取子的所有方法.如果从有a个 ...

  5. HDU 2176 取(m堆)石子游戏 —— (Nim博弈)

    如果yes的话要输出所有情况,一开始觉得挺难,想了一下也没什么. 每堆的个数^一下,答案不是0就是先取者必胜,那么对必胜态显然至少存在一种可能性使得当前局势变成必败的.只要任意选取一堆,把这堆的数目变 ...

  6. HDU 2176 取(m堆)石子游戏 尼姆博弈

    题目思路: 对于尼姆博弈我们知道:op=a[1]^a[2]--a[n],若op==0先手必败 一个简单的数学公式:若op=a^b 那么:op^b=a: 对于第i堆a[i],op^a[i]的值代表其余各 ...

  7. HDU 2176 取(m堆)石子游戏(尼姆博奕)

    nim基础博弈 #include<stdio.h> #include<iostream> #include<cstring> #include<queue&g ...

  8. HDU 2177 取(2堆)石子游戏

    取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  9. 杭电 2176 取(m堆)石子游戏(博弈)

    取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

随机推荐

  1. 【剑指 Offer】03.1.不修改数组找出重复的数字

    找出数组中重复的数字. 在一个长度为 n + 1 的数组 nums 里的所有数字都在 1-n 的范围内.所以数组中至少有一个是重复的.请找出数组中任意一个重复的数字. 示例 1: 输入: [2, 3, ...

  2. Nginx 安装与配置教程

    标签: Nginx Linux Windows 配置 描述: Ubuntu 下以及 Windows 下 Nginx 的配置:配置详解:有关 Nginx 如何配置 Nginx 在 Ubuntu 下的安装 ...

  3. Ansible User 模块添加单用户并ssh-key复制

    Ansible User 模块添加单用户并ssh-key复制 1 Ansible 版本: ansible 2.9.6 config file = /etc/ansible/ansible.cfg co ...

  4. python学习笔记 | 递归思想

    1.引子 大师 L. Peter Deutsch 说过: To Iterate is Human, to Recurse, Divine. 中文译为:人理解迭代,神理解递归 2.什么是递归 简单理解: ...

  5. 【Web】HTML入门小结

    文章目录 HTML? HTML 初识元素/标签 HTML语义化标签 标题 段落 font HTMl链接 HTML图像 HTML列表 HTML div HTML 块级元素与行内元素 HTML常用带格式作 ...

  6. ctfhub技能树—sql注入—Refer注入

    手注 查询数据库名 查询数据表名 查询字段名 查询字段信息 脚本(from 阿狸) #! /usr/bin/env python # _*_ coding:utf-8 _*_ url = " ...

  7. Pulsar 社区周报|2021-01-11~2021-01-17

    Pulsar 周报由 StreamNative 翻译整理.原文内容来自 StreamNative 官网 Pulsar 周报模块. 本期编辑:Tango@StreamNative. 关于 Apache ...

  8. AQS之ReentrantReadWriteLock写锁

    用法 1.1 定义一个安全的list集合 public class LockDemo { ArrayList<Integer> arrayList = new ArrayList<& ...

  9. Spring Boot(IDEA,Gradle)超详细用户管理项目(一)——Hello World

    1.构建工具的配置(Gradle):自定义-所有设置:构建.执行.部署-构建工具-Gradle: 设置Gradle用户主目录:(该目录相当于仓库,gradle将下载所需依赖到此目录下),此目录下可新建 ...

  10. springboot项目启动并立即执行自定义程序内容

    第一种:实现ApplicationRunner接口,重写其中的run()方法: 第二种:实现CommandLineRunner接口,重写其中的run()方法: 还有第三种...