tensorflow在文本处理中的使用——辅助函数
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理
代码地址:https://github.com/nfmcclure/tensorflow-cookbook
在讲述skip-gram,CBOW,Word2Vec,Doc2Vec模型时需要复用的函数
- 加载数据函数
- 归一化文本函数
- 生成词汇表函数
- 生成单词索引表
- 生成批量数据函数
加载数据函数
# Load the movie review data
# Check if data was downloaded, otherwise download it and save for future use
def load_movie_data(data_folder_name):
pos_file = os.path.join(data_folder_name, 'rt-polarity.pos')
neg_file = os.path.join(data_folder_name, 'rt-polarity.neg') # Check if files are already downloaded
if os.path.isfile(pos_file):
pos_data = []
with open(pos_file, 'r') as temp_pos_file:
for row in temp_pos_file:
pos_data.append(row)
neg_data = []
with open(neg_file, 'r') as temp_neg_file:
for row in temp_neg_file:
neg_data.append(row)
else: # If not downloaded, download and save
movie_data_url = 'http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.tar.gz'
stream_data = urllib.request.urlopen(movie_data_url)
tmp = io.BytesIO()
while True:
s = stream_data.read(16384)
if not s:
break
tmp.write(s)
stream_data.close()
tmp.seek(0) tar_file = tarfile.open(fileobj=tmp, mode="r:gz")
pos = tar_file.extractfile('rt-polaritydata/rt-polarity.pos')
neg = tar_file.extractfile('rt-polaritydata/rt-polarity.neg')
# Save pos/neg reviews
pos_data = []
for line in pos:
pos_data.append(line.decode('ISO-8859-1').encode('ascii',errors='ignore').decode())
neg_data = []
for line in neg:
neg_data.append(line.decode('ISO-8859-1').encode('ascii',errors='ignore').decode())
tar_file.close()
# Write to file
if not os.path.exists(save_folder_name):
os.makedirs(save_folder_name)
# Save files
with open(pos_file, "w") as pos_file_handler:
pos_file_handler.write(''.join(pos_data))
with open(neg_file, "w") as neg_file_handler:
neg_file_handler.write(''.join(neg_data))
texts = pos_data + neg_data
target = [1]*len(pos_data) + [0]*len(neg_data)
return(texts, target)
归一化文本函数
# Normalize text
def normalize_text(texts, stops):
# Lower case
texts = [x.lower() for x in texts] # Remove punctuation
texts = [''.join(c for c in x if c not in string.punctuation) for x in texts] # Remove numbers
texts = [''.join(c for c in x if c not in '') for x in texts] # Remove stopwords
texts = [' '.join([word for word in x.split() if word not in (stops)]) for x in texts] # Trim extra whitespace
texts = [' '.join(x.split()) for x in texts] return(texts)
生成词汇表函数
# Build dictionary of words构建词汇表(单词和单词数对),词频不够的单词(即标记为unknown的单词)标记为RARE
def build_dictionary(sentences, vocabulary_size):
# Turn sentences (list of strings) into lists of words
split_sentences = [s.split() for s in sentences]
words = [x for sublist in split_sentences for x in sublist] # Initialize list of [word, word_count] for each word, starting with unknown
count = [['RARE', -1]] # Now add most frequent words, limited to the N-most frequent (N=vocabulary size)
count.extend(collections.Counter(words).most_common(vocabulary_size-1)) # Now create the dictionary
word_dict = {}
# For each word, that we want in the dictionary, add it, then make it
# the value of the prior dictionary length
for word, word_count in count:
word_dict[word] = len(word_dict) return(word_dict)
生成单词索引表
# Turn text data into lists of integers from dictionary
def text_to_numbers(sentences, word_dict):
# Initialize the returned data
data = []
for sentence in sentences:
sentence_data = []
# For each word, either use selected index or rare word index
for word in sentence.split():
if word in word_dict:
word_ix = word_dict[word]
else:
word_ix = 0
sentence_data.append(word_ix)
data.append(sentence_data)
return(data)
生成批量数据函数
# Generate data randomly (N words behind, target, N words ahead)
def generate_batch_data(sentences, batch_size, window_size, method='skip_gram'):
# Fill up data batch
batch_data = []
label_data = []
while len(batch_data) < batch_size:
# select random sentence to start
rand_sentence_ix = int(np.random.choice(len(sentences), size=1))
rand_sentence = sentences[rand_sentence_ix]
# Generate consecutive windows to look at
window_sequences = [rand_sentence[max((ix-window_size),0):(ix+window_size+1)] for ix, x in enumerate(rand_sentence)]
# Denote which element of each window is the center word of interest
label_indices = [ix if ix<window_size else window_size for ix,x in enumerate(window_sequences)] # Pull out center word of interest for each window and create a tuple for each window
if method=='skip_gram':
batch_and_labels = [(x[y], x[:y] + x[(y+1):]) for x,y in zip(window_sequences, label_indices)]
# Make it in to a big list of tuples (target word, surrounding word)
tuple_data = [(x, y_) for x,y in batch_and_labels for y_ in y]
batch, labels = [list(x) for x in zip(*tuple_data)]
elif method=='cbow':
batch_and_labels = [(x[:y] + x[(y+1):], x[y]) for x,y in zip(window_sequences, label_indices)]
# Only keep windows with consistent 2*window_size
batch_and_labels = [(x,y) for x,y in batch_and_labels if len(x)==2*window_size]
batch, labels = [list(x) for x in zip(*batch_and_labels)]
elif method=='doc2vec':
# For doc2vec we keep LHS window only to predict target word
batch_and_labels = [(rand_sentence[i:i+window_size], rand_sentence[i+window_size]) for i in range(0, len(rand_sentence)-window_size)]
batch, labels = [list(x) for x in zip(*batch_and_labels)]
# Add document index to batch!! Remember that we must extract the last index in batch for the doc-index
batch = [x + [rand_sentence_ix] for x in batch]
else:
raise ValueError('Method {} not implmented yet.'.format(method)) # extract batch and labels
batch_data.extend(batch[:batch_size])
label_data.extend(labels[:batch_size])
# Trim batch and label at the end
batch_data = batch_data[:batch_size]
label_data = label_data[:batch_size] # Convert to numpy array
batch_data = np.array(batch_data)
label_data = np.transpose(np.array([label_data])) return(batch_data, label_data)
tensorflow在文本处理中的使用——辅助函数的更多相关文章
- tensorflow在文本处理中的使用——Doc2Vec情感分析
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——Word2Vec预测
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——CBOW词嵌入模型
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——skip-gram模型
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——TF-IDF算法
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——词袋
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-coo ...
- tensorflow在文本处理中的使用——skip-gram & CBOW原理总结
摘自:http://www.cnblogs.com/pinard/p/7160330.html 先看下列三篇,再理解此篇会更容易些(个人意见) skip-gram,CBOW,Word2Vec 词向量基 ...
- TensorFlow实现文本情感分析详解
http://c.biancheng.net/view/1938.html 前面我们介绍了如何将卷积网络应用于图像.本节将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句 ...
- jQuery文本框中的事件应用
jQuery文本框中的事件应用 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "ht ...
随机推荐
- IE下的双外边距浮动bug
最常见且最容易发现的额一个bug是IE 6和最低版本中的双外边距浮动bug.这个bug是任何浮动元素上的外边距加倍. 上面代码中,div盒子向左边浮动,设置的margin-left的值是10px.在c ...
- 常用的iOS 宏定义 (持续更新中)
1.System Versioning Preprocessor Macros #define SYSTEM_VERSION_EQUAL_TO(v) ([[[UIDevice currentDevic ...
- vagrant up 时提示错误 cound not open file
根据教程:https://laravel-china.org/docs/laravel-development-environment/5.5/development-environment-wind ...
- Directx11教程(57) 环境映射
原文:Directx11教程(57) 环境映射 建好skydome后,如果我们想让其中的某个物体,比如那个球体来映射出周围环境的蓝天白云(不包括自己附近的物体),该怎么做呢?此时可以把这个 ...
- JS放在body与head中的不同
放在body和head其实差不多的,只不过是文档解析的时间不同.浏览器解析html是从上到下的.如果把javascript放在head里的话,则先被解析,但这时候body还没有解析,所以$(#btn) ...
- Linux用户、群组和权限命令总结
新建用户natasha,uid为1000,gid为555,备注信息为“master” groupadd -g 555 natasha useradd -u 1000 -g 555 -c maste ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十三章:计算着色器(The Compute Shader)
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第十三章:计算着色器(The Compute Shader) 代码工程 ...
- framework7 上拉加载一些ajax问题
1.请求第一组数据后如果不能产生上拉进度条,则无法进行上拉加载. 解决办法:首次加载的数据量设置合理即可. 2.同一组数据请求多次,原因是异步刷新时间差,请求参数未更新,多次触发了上拉加载. 解决办法 ...
- LeetCode108 Convert Sorted Array to Binary Search Tree
Given an array where elements are sorted in ascending order, convert it to a height balanced BST. (M ...
- 《spring boot》8.2章学习时无法正常启动,报“ORA-00942: 表或视图不存在 ”
在学习<spring boot>一书的过程中,由于原书作者难免有一些遗漏的的地方,或者系统.软件版本不一致.框架更新等各种因素,完全安装书中源码页不能实现项目的正常启动 在8.2章节,演示 ...