P4301 [CQOI2013]新Nim游戏

题目描述

传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。

本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。

如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。

输入输出格式

输入格式:

第一行为整数k。即火柴堆数。

第二行包含k个不超过10^9的正整数,即各堆的火柴个数。

输出格式:

输出第一回合拿的火柴数目的最小值。如果不能保证取胜,输出-1。

输入输出样例

输入样例#1:

6
5 5 6 6 5 5
输出样例#1:

21

说明

k<=100

sol:感觉这样的题属于写不出来类型。。。

首先可以看出先手应该是必胜的(如第一步取n-2堆)

要求是使得先手取完后下一步不管后手按要求怎么取,剩余数字异或和都不为0

并且尽量使得先手第一步取得少。。。

完全不知道上面那个怎么做到,去翻题解


线性基!!!(代码极短,适合ZZ选手)

题解是这样做上面写的那个操作的

从大到小排序,然后用线性基把可能异或和为0的取走,否则放进线性基中

/*
易知先手应该是必胜的(如第一步取n-2堆)
所以使得第一次新手取完后
下一步不管后手按要求怎么取,剩余数字异或和都不为0
从大到小排序,然后用线性基把可能异或和为0的取走,否则放进线性基中
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=;
int n,A[N],B[N];
map<int,bool>Map;
namespace Xianxingji
{
int Ji[];
inline void Insert(ll Num)
{
int i;
for(i=;~i;i--)
{
if((Num&(<<i))==) continue;
if(!Ji[i]) {Ji[i]=Num; break;}
Num^=Ji[i];
}
return;
}
inline bool Ask(int Num)
{
int i;
for(i=;~i;i--) if(Num&(<<i))
{
if(!Ji[i]) break;
Num^=Ji[i];
}
return (Num==)?:;
}
}
#define Xxj Xianxingji
int main()
{
int i;
ll ans=;
R(n);
for(i=;i<=n;i++)
{
R(A[i]);
if(!Map[A[i]]) Map[A[i]]=,B[++*B]=A[i];
else ans+=1ll*A[i];
}
sort(B+,B+*B+);
for(i=*B;i>=;i--)
{
if(Xxj::Ask(B[i]))
{
ans+=1ll*B[i];
}
else Xxj::Insert(B[i]);
}
Wl(ans);
return ;
}
/*
input
6
5 5 6 6 5 5
output
21
*/

洛谷P4301 [CQOI2013]新Nim游戏的更多相关文章

  1. 洛谷 P4301 [CQOI2013]新Nim游戏 解题报告

    P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...

  2. 洛谷P4301 [CQOI2013]新Nim游戏(线性基)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 后手在什么时候能够获胜呢?只有在他能构造出一个子集的异或和为0时(这个应该是nim博弈的结论了吧) 那么为了必胜,我们就要取到没有子集异或和为0为止 ...

  3. p4301 [CQOI2013]新Nim游戏

    传送门 分析 通过nim游戏我们可以知道我们现在的任务就是通过两轮之后使得剩余的几堆异或和为非0数 所以我们只需要在第一步使得剩余集合的任意非空子集的异或和非0即可 于是我们考虑线性基 我们知道线性基 ...

  4. [CQOI2013]新Nim游戏(线性基)

    P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...

  5. BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基

    一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...

  6. BZOJ3105: [cqoi2013]新Nim游戏

    题解: 线性基?类似于向量上的基底. 此题题解戳这里:http://blog.csdn.net/wyfcyx_forever/article/details/39477673 代码: #include ...

  7. bzoj 3105: [cqoi2013]新Nim游戏 异或高消 && 拟阵

    3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 535  Solved: 317[Submit][Stat ...

  8. 【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基

    [BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个 ...

  9. BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论

    BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...

随机推荐

  1. PAT B1030 完美数列 (25 分)

    给定一个正整数数列,和正整数 p,设这个数列中的最大值是 M,最小值是 m,如果 M≤mp,则称这个数列是完美数列. 现在给定参数 p 和一些正整数,请你从中选择尽可能多的数构成一个完美数列. 输入格 ...

  2. 基于Python自动上传包到nexus仓库

    1.设计思路 用户通过excel表格的形式填写包的信息,并将包一起发送给负责人 2.代码实现 #coding:utf8 import os import xlrd def GetData(fileNa ...

  3. BZOJ4999: This Problem Is Too Simple!树链剖分+动态开点线段树

    题目大意:将某个节点的颜色变为x,查询i,j路径上多少个颜色为x的点... 其实最开始一看就是主席树+树状数组+DFS序...但是过不去...MLE+TLE BY FCWWW 其实树剖裸的一批...只 ...

  4. JavaScript 为什么不要使用 eval

    本文内容 eval 隐藏的 eval 安全问题 结论 参考资料   eval eval 函数是一个高等级的函数,它与任何对象都无关.其参数,如果是一个字符串表达式,那么该函数计算表达式的值:如果是一个 ...

  5. 移动端jq及zepto事件绑定

    最近做移动端网页,用到了zepto.js , 其大致用法跟 jquery 差不多,但是在时间绑定的时候被困了好久的坑. 这里说的主要是给未来元素绑定事件.未来元素:这里指的是通过 ajax 请求得到数 ...

  6. HTML 头部 (head) 实例

    所有表签解释.HTML <meta> 元素元数据(metadata)是关于数据的信息. <meta> 标签提供关于 HTML 文档的元数据.元数据不会显示在页面上,但是对于机器 ...

  7. 整理一些常用的前端CND加速库,VUE,Jquery,axios

    VUE https://cdn.staticfile.org/vue/2.2.2/vue.min.js Jquery https://cdn.bootcss.com/jquery/3.4.0/jque ...

  8. 【LeetCode】数组--合并区间(56)

    写在前面   老粉丝可能知道现阶段的LeetCode刷题将按照某一个特定的专题进行,之前的[贪心算法]已经结束,虽然只有三个题却包含了简单,中等,困难这三个维度,今天介绍的是第二个专题[数组] 数组( ...

  9. "Regressing Robust and Discriminative 3D Morphable Models with a very Deep Neural Network" 解读

    简介:这是一篇17年的CVPR,作者提出使用现有的人脸识别深度神经网络Resnet101来得到一个具有鲁棒性的人脸模型. 原文链接:https://www.researchgate.net/publi ...

  10. Python机器学习/LinearRegression(线性回归模型)(附源码)

    LinearRegression(线性回归) 2019-02-20  20:25:47 1.线性回归简介 线性回归定义: 百科中解释 我个人的理解就是:线性回归算法就是一个使用线性函数作为模型框架($ ...