import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点
OUTPUT_NODE = 10 # 输出节点
LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 5000 def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
# 不使用滑动平均类
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2
else:
# 使用滑动平均类
layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2) def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
# 生成隐藏层的参数。
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
# 生成输出层的参数。
weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) # 计算不含滑动平均类的前向传播结果
y = inference(x, None, weights1, biases1, weights2, biases2) # 定义训练轮数及相关的滑动平均类
global_step = tf.Variable(0, trainable=False) # 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
regularaztion = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularaztion # 设置指数衰减的学习率。
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True) # 优化损失函数
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # 反向传播更新参数
with tf.control_dependencies([train_step]):
train_op = tf.no_op(name='train') # 计算正确率
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化会话,并开始训练过程。
with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels} # 循环的训练神经网络。
for i in range(TRAINING_STEPS):
if i % 1000 == 0:
validate_acc = sess.run(accuracy, feed_dict=validate_feed)
print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc))
xs,ys=mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op,feed_dict={x:xs,y_:ys})
test_acc=sess.run(accuracy,feed_dict=test_feed)
print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc))) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__=='__main__':
main()

吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  2. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  3. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  4. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  5. 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  6. 吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...

  7. 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别

    import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...

  8. 吴裕雄 python 神经网络——TensorFlow训练神经网络:卷积层、池化层样例

    import numpy as np import tensorflow as tf M = np.array([ [[1],[-1],[0]], [[-1],[2],[1]], [[0],[2],[ ...

  9. 吴裕雄--天生自然 Tensorflow卷积神经网络:花朵图片识别

    import os import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageChops from ...

随机推荐

  1. java的动态绑定和多态

    public class Shape { public void area() { System.out.println("各种形状的面积..."); } public stati ...

  2. drf大总结

    接口 """ 1.什么是接口:url+请求参数+响应数据 | 接口文档 2.接口规范: url:https,api,资源(名词复数),v1,get|post表示操作资源的 ...

  3. 1.2、初识WebRTC

    文章导读:本节内容,如标题所讲,“初识webrtc”.读完之后,我需要你能清楚三个问题:第一.真正的搞明白实时音视频在生产环境中的真实应用以及前景分析:第二.开发一个符合商业标准的实时音视频应用需要解 ...

  4. python的scribe client

    在网上找了一个python的scribe client使用方法 依赖的模块: pip install facebook-scribe pip install thrift 代码例子: #!/usr/b ...

  5. C语言运算符详解

    运算符是一种告诉编译器执行特定的数学或逻辑操作的符号.C 语言内置了丰富的运算符,并提供了以下类型的运算符: 算术运算符 关系运算符 逻辑运算符 位运算符 赋值运算符 杂项运算符 本章将逐一介绍算术运 ...

  6. java.lang.IllegalStateException: Illegal access: this web application instance has been stopped already. Could not load [META-INF/services/com.alibaba.druid.filter.Filter].

    九月 11, 2019 2:56:36 下午 org.apache.catalina.loader.WebappClassLoaderBase checkStateForResourceLoading ...

  7. Unity引用System.Windows.Forms遇到的一些坑

    这两天在做一个unity打开文件选择框的功能.网上找到两种方法, 第一种是调用win32打开对话框,这个挺好,但是有个致命的问题,没办法多选!!!多选的话返回的是根目录的路径,文件名返回不了,找了半天 ...

  8. django template 模板

    九.Template模板 Template 模板是根据view传过来数据在html展示的功能,典型python 模板jinjia2库提供丰富的上下文展示func 创建template位置在项目下与ap ...

  9. Cosmetic Bottles-Cosmetic Packaging Purpose: 5 Things

    Packaging in the cosmetics industry is based on in-depth research. And how it helps to win the edge ...

  10. ‘\0’的ASCII码

    1.'\0'的ASCII码为0 2.用串口发送字符串时,可以通过'\0'判断字符串是否结束,但发送数字数组的时候不能通过'\0'判断数组是否结束,因为数字0与'\0'的ASCII码值相同.