吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点
OUTPUT_NODE = 10 # 输出节点
LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 5000 def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
# 不使用滑动平均类
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2
else:
# 使用滑动平均类
layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2) def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
# 生成隐藏层的参数。
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
# 生成输出层的参数。
weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) # 计算不含滑动平均类的前向传播结果
y = inference(x, None, weights1, biases1, weights2, biases2) # 定义训练轮数及相关的滑动平均类
global_step = tf.Variable(0, trainable=False) # 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
regularaztion = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularaztion # 设置指数衰减的学习率。
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True) # 优化损失函数
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # 反向传播更新参数
with tf.control_dependencies([train_step]):
train_op = tf.no_op(name='train') # 计算正确率
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化会话,并开始训练过程。
with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels} # 循环的训练神经网络。
for i in range(TRAINING_STEPS):
if i % 1000 == 0:
validate_acc = sess.run(accuracy, feed_dict=validate_feed)
print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc))
xs,ys=mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op,feed_dict={x:xs,y_:ys})
test_acc=sess.run(accuracy,feed_dict=test_feed)
print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc))) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__=='__main__':
main()

吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均的更多相关文章
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别
import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:卷积层、池化层样例
import numpy as np import tensorflow as tf M = np.array([ [[1],[-1],[0]], [[-1],[2],[1]], [[0],[2],[ ...
- 吴裕雄--天生自然 Tensorflow卷积神经网络:花朵图片识别
import os import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageChops from ...
随机推荐
- 用户 'sa' 登录失败。该用户与可信 SQL Server 连接无关联'。错误代码:18452 解决办法
原文:https://blog.csdn.net/wuxianwei/article/details/6330270 SQLSERVER 2005采用'SQLSERVER身份验证'去登录, 出错的原因 ...
- How To Use These LED Garden Lights
Are you considering the lighting options for the outdoor garden? Depending on how you use it, LED ga ...
- 牛客1080D tokitsukaze and Event (双向最短路)
题目链接:https://ac.nowcoder.com/acm/contest/1080/D 首先建两个图,一个是权值为a的图,一个是权值为b的图. 从s起点以spfa算法跑权值为ai的最短路到t点 ...
- 可以使用的一些API(转存)
聚合数据 juhe.com 转存的格式不如原文的好看,可以直接访问原文 https://www.jianshu.com/p/9a0acf69b789 api接口应该会越来越火,上个全的,楼主自己找找吧 ...
- Flask 教程 第十七章:Linux上的部署
本文翻译自The Flask Mega-Tutorial Part XVII: Deployment on Linux 这是Flask Mega-Tutorial系列的第十七部分,我将把Microbl ...
- C++的四种转换(const_cast、static_cast、dynamic_cast、reinterpreter_cast)
static_cast 相当于C语言中的强制转换:(类型)表达式或类型(表达式),用于各种隐式转换 非const转const.void*转指针.int和char相互转换 用于基类和子类之间的指针和引用 ...
- Spring bean继承
Bean 定义继承 bean 定义可以包含很多的配置信息,包括构造函数的参数,属性值,容器的具体信息例如初始化方法,静态工厂方法名,等等. 子 bean 的定义继承父定义的配置数据.子定义可以根据需要 ...
- jeecg /ant-design-vuepro 前端使用
1.原生axios使用 <script> import Vue from 'vue'; import axios from 'axios'; axios.defaults.baseURL ...
- tomcat6w.exe启动tomcat
在使用tomcat中,我们可能经常点击startup.bat来启动tomcat,但也不少通过tomcat6w.exe来启动的. 但是当我们点击tomcat6w.exe的时候会报错,信息如下:提示 指定 ...
- Selenium元素定位之页面检测技巧
我们在进行web自动化测试的时候进行XPath或者CSS定位,需要检测页面元素定位是否正确,如果用脚本去检测,那么效率是极低的. 一般网上推选装额外的插件来实现页面元素定位检测 如:firebug. ...