HDU 1890 - Robotic Sort - [splay][区间反转+删除根节点]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1890
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
In this task, you are to write software for a robot that handles samples in such a laboratory. Imagine there are material samples lined up on a running belt. The samples have different heights, which may cause troubles to the next processing unit. To eliminate such troubles, we need to sort the samples by their height into the ascending order.
Reordering is done by a mechanical robot arm, which is able to pick up any number of consecutive samples and turn them round, such that their mutual order is reversed. In other words, one robot operation can reverse the order of samples on positions between A and B.
A possible way to sort the samples is to find the position of the smallest one (P1) and reverse the order between positions 1 and P1, which causes the smallest sample to become first. Then we find the second one on position P and reverse the order between 2 and P2. Then the third sample is located etc.
The picture shows a simple example of 6 samples. The smallest one is on the 4th position, therefore, the robot arm reverses the first 4 samples. The second smallest sample is the last one, so the next robot operation will reverse the order of five samples on positions 2–6. The third step will be to reverse the samples 3–4, etc.
Your task is to find the correct sequence of reversal operations that will sort the samples using the above algorithm. If there are more samples with the same height, their mutual order must be preserved: the one that was given first in the initial order must be placed before the others in the final order too.
The last scenario is followed by a line containing zero.
Each Pi must be an integer (1 ≤ Pi ≤ N ) giving the position of the i-th sample just before the i-th reversal operation.
Note that if a sample is already on its correct position Pi , you should output the number Pi anyway, indicating that the “interval between Pi and Pi ” (a single sample) should be reversed.
题意:
给出一个n,给出n个样品的高度,
给出一种根据高度排序的算法,其第 i 次操作:找到第 i 小的那个数的位置为Pi,将整个区间[i,Pi]反转,这样一来第 i 小的数就在位置 i 上;从 i 等于 1 到 n 循环这样的操作。
现在要求你给出每次操作的Pi。
题解:
伸展树1~n建树,把每个节点key值等于节点的编号(即key[x] = x),同时使得中序遍历伸展树得到的序列为1~n,
以题目中两个样例为例,建成的树应为如下图:
(注意,图中节点内的数字,既是节点编号,也是key值,即key[3] = 3,key[1] = 1,key[5] = 5……)
我们此时的伸展树维护的是n个样品的编号(编号为1~n);
将n个样品按输入顺序编号,再按照first高度second编号进行升序排序,那么新的顺序,就是题目中所描述的排序算法中的每次操作的顺序,
这样,按新的顺序依次枚举n个样品,对于第 i 个样品,其编号为sample[i].id,
我们此时就要去伸展树中寻找某个节点x,其key[x] = sample[i].id;而我们要求的Pi,就是比这个节点小的节点个数加1;
根据上面反复提到的,key[x] = x,所以我们其实就是把节点x = sample[i].id伸展到根,然后求其左子树内节点个数,再加1,
同时,因为需要区间翻转,所以我们可以翻转左子树,并且删除根节点,相当于翻转了[i,Pi],
由于我们不断的删除节点,因此实际答案就应该是左子树内节点个数 + 1 + (i - 1)。
AC代码:
#include<bits/stdc++.h>
#define Key_value ch[ch[root][1]][0]
using namespace std;
const int maxn=1e5+; int n;
struct Sample
{
int h;
int id;
}sample[maxn];
bool cmp(Sample a,Sample b)
{
if(a.h==b.h) return a.id<b.id;
else return a.h<b.h;
} /******************************** splay - st ********************************/
int root,nodecnt;
int par[maxn],ch[maxn][];
int key[maxn],size[maxn];
bool rev[maxn];
void NewNode(int &x,int p,int k)
{
x=k;
par[x]=p;
ch[x][]=ch[x][]=;
key[x]=k;
size[x]=;
rev[x]=;
}
void Update_Rev(int x)
{
if(x==) return;
rev[x]^=1;
}
void Pushup(int x)
{
size[x]=size[ch[x][]]+size[ch[x][]]+;
}
void Pushdown(int x)
{
if(rev[x])
{
swap(ch[x][],ch[x][]);
Update_Rev(ch[x][0]);
Update_Rev(ch[x][1]);
rev[x]=;
}
}
void Rotate(int x,int type) //旋转,0为左旋zag,1为右旋zig
{
int y=par[x];
Pushdown(y); Pushdown(x); //先把y的标记向下传递,再把x的标记往下传递
ch[y][!type]=ch[x][type]; par[ch[x][type]]=y;
if(par[y]) ch[par[y]][(ch[par[y]][]==y)]=x;
par[x]=par[y];
ch[x][type]=y; par[y]=x;
Pushup(y); Pushup(x);
}
void Splay(int x,int goal)
{
Pushdown(x);
while(par[x]!=goal)
{
if(par[par[x]]==goal)
{
Pushdown(par[x]); Pushdown(x);
Rotate(x,ch[par[x]][]==x); //左孩子zig,有孩子zag
}
else
{
Pushdown(par[par[x]]); Pushdown(par[x]); Pushdown(x);
int y=par[x];
int type=(ch[par[y]][]==y); //type=0,y是右孩子;type=1,y是左孩子
if(ch[y][type]==x)
{
Rotate(x,!type);
Rotate(x,type);
}
else
{
Rotate(y,type);
Rotate(x,type);
}
}
}
if(goal==) root=x;
}
int Get_Kth(int x,int k) //得到第k个节点
{
Pushdown(x);
int t=size[ch[x][]]+;
if(t==k) return x;
if(t>k) return Get_Kth(ch[x][],k);
else return Get_Kth(ch[x][],k-t);
}
int Get_Min(int x)
{
Pushdown(x);
while(ch[x][])
{
x=ch[x][];
Pushdown(x);
}
return x;
}
int Get_Max(int x)
{
Pushdown(x);
while(ch[x][])
{
x=ch[x][];
Pushdown(x);
}
return x;
}
void Build(int &x,int l,int r,int par)
{
if(l>r) return;
int mid=(l+r)/;
NewNode(x,par,mid);
Build(ch[x][],l,mid-,x);
Build(ch[x][],mid+,r,x);
Pushup(x);
}
void Init()
{
root=nodecnt=;
ch[root][]=ch[root][]=size[root]=key[root]=par[root]=rev[root]=;
Build(root,,n,);
}
void Del()
{
if(ch[root][]== && ch[root][]==) root=;
else if(ch[root][]==)
{
par[ch[root][]]=;
root=ch[root][];
}
else if(ch[root][]==)
{
par[ch[root][]]=;
root=ch[root][];
}
else
{
int pre=Get_Max(ch[root][]);
int nxt=Get_Min(ch[root][]);
Splay(pre,); Splay(nxt,root);
par[Key_value]=;
Key_value=;
Pushup(ch[root][]);
Pushup(root);
}
}
/******************************** splay - ed ********************************/ int main()
{
while(scanf("%d",&n) && n!=)
{
Init();
for(int i=;i<=n;i++)
{
scanf("%d",&sample[i].h);
sample[i].id=i;
}
sort(sample+,sample+n+,cmp); for(int i=;i<n;i++)
{
Splay(sample[i].id,);
printf("%d ",i+size[ch[root][]]);
Update_Rev(ch[root][]);
Del();
}
printf("%d\n",n);
}
}
HDU 1890 - Robotic Sort - [splay][区间反转+删除根节点]的更多相关文章
- hdu 1890 Robotic Sort(splay 区间反转+删点)
题目链接:hdu 1890 Robotic Sort 题意: 给你n个数,每次找到第i小的数的位置,然后输出这个位置,然后将这个位置前面的数翻转一下,然后删除这个数,这样执行n次. 题解: 典型的sp ...
- HDU1890 Robotic Sort Splay tree反转,删除
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1890 题目中涉及数的反转和删除操作,需要用Splay tree来实现.首先对数列排序,得到每个数在数列 ...
- HDU 1890 Robotic Sort | Splay
Robotic Sort Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) [Pr ...
- HDU 1890 Robotic Sort (splay tree)
Robotic Sort Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- 数据结构(Splay平衡树):HDU 1890 Robotic Sort
Robotic Sort Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- hdu1890 Robotic Sort (splay+区间翻转单点更新)
Problem Description Somewhere deep in the Czech Technical University buildings, there are laboratori ...
- HDU 1890 Robotic Sort(splay)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=1890 [题意] 给定一个序列,每次将i..P[i]反转,然后输出P[i],P[i]定义为当前数字i ...
- hdu 1890 Robotic Sort
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1890 如下: #include<cstdio> #include<cstdlib&g ...
- 算法模板——splay区间反转 2
实现功能:同splay区间反转 1(基于BZOJ3223 文艺平衡树) 这次改用了一个全新的模板(HansBug:琢磨了我大半天啊有木有),大大简化了程序,同时对于splay的功能也有所完善 这里面没 ...
随机推荐
- 一个基于jquery的智能提示控件intellSeach.js
一.需求 我们经常会遇到[站内搜索]的需求,为了提高用户体验,我们希望能做到像百度那样的即时智能提示.例如:某公司人事管理系统,想搜索李XX,只要输入“李”,系统自然会提示一些姓李的员工,这样方便用户 ...
- 数据注解特性--NotMapped
NotMapped特性可以应用到领域类的属性中,Code-First默认的约定,是为所有带有get,和set属性选择器的属性创建数据列.. NotManpped特性打破了这个约定,你可以使用NotMa ...
- SpringBoot------Eclipce配置Spring Boot
步骤一: 步骤二: 点击左下角Eclipse图标下的“Popular”菜单,选择Spring安装(已安装的插件在Installed中显示),一直按步骤确定就好了,如果中途下载超时什么的,就看看自己的网 ...
- PMP用语集
AC actual cost 实际成本 ACWP actual cost of work performed 已完工作实际成本 BAC budget at completion 完工预算 BCWP b ...
- 8 -- 深入使用Spring -- 1...4 属性占位符配置器
8.1.4 属性占位符配置器 PropertyPlaceholderConfigurer 是一个容器后处理器,负责读取Properties属性文件里的属性值,并将这些属性值设置成Spring配置文件的 ...
- Win10 取消桌面快捷键图标
新建文本文档 --- 写入如下内容 --- 改名为 .bat 并运行 @echo off color 2 reg delete HKCR\lnkfile /v IsShortcut /f reg de ...
- SaltStack salt-run 命令
salt-run 常见用法如下: salt-run manage.up # 查看在线的minion salt-run manage.down # 查看不在线的minion salt-run manag ...
- Linux 下 c 语言 聊天软件
这是我学C语言写的第一个软件,是一个完整的聊天软件,里面包括客户端,和服务器端,可以互现聊天,共享文件,有聊天室等,是一个有TCP和UDP协议的聊天软件,测试过很多次在CENTOS和UBUNTU下都通 ...
- java的两种冒泡算法
所谓的冒泡算法,就是给数组进行排序,可以根据以小到大的顺序,也可以根据以小到大的顺序,在数组的封装类java.util.Arrays通过sort方法进行按升序的排序.那不用类的话怎么进行呢? 思路一: ...
- SpringMVC实现多文件(批量)上传
1.springMVC实现多文件上传需要的包如图2.webroot下的结构如图所示 3.java代码: package cn.lxc.controller; import java.io.File; ...