ACM数论-欧几里得与拓展欧几里得算法
欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。
基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。
递归版算法:
int gcd(int a,int b)
{
if(b==)
return a;
return
gcd(b,a%b);
}
递归优化版:
int gcd(int a,int b)
{
return b ? gcd(b,a%b) : a;
}
迭代版:
int Gcd(int a, int b)
{
while(b != )
{
int r = b;
b = a % b;
a = r;
}
return a;
}
扩展欧几里德算法
基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。
证明:设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,ab!=0 时
设 ax1+by1=gcd(a,b);
bx2+(a mod b)y2=gcd(b,a mod b);
根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);
则:ax1+by1=bx2+(a mod b)y2;
即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;
根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
递归版算法:
int exgcd(int a,int b,int &x,int &y)
{
if(b==)
{
x=;
y=;
return a;
}
int r=exgcd(b,a%b,x,y);
int t=x;
x=y;
y=t-a/b*y;
return r;
}
非递归版:
int exgcd(int m,int n,int &x,int &y)
{
int x1,y1,x0,y0;
x0=; y0=;
x1=; y1=;
x=; y=;
int r=m%n;
int q=(m-r)/n;
while(r)
{
x=x0-q*x1; y=y0-q*y1;
x0=x1; y0=y1;
x1=x; y1=y;
m=n; n=r; r=m%n;
q=(m-r)/n;
}
return n;
}
扩展欧几里德算法的应用主要有以下三方面:
(1)求解不定方程;
(2)求解模线性方程(线性同余方程);
(3)求解模的逆元;
用扩展欧几里得算法解不定方程ax+by=c:
bool linear_equation(int a,int b,int c,int &x,int &y)
{
int d=exgcd(a,b,x,y);
if(c%d)
return false;
int k=c/d;
x*=k; y*=k; //求得的只是其中一组解
return true;
}
求出解之间的间隔,那么就可以求出模的线性方程的解集:
bool modular_linear_equation(int a,int b,int n)
{
int x,y,x0,i;
int d=exgcd(a,n,x,y);
if(b%d)
return false;
x0=x*(b/d)%n; //特解
for(i=;i<d;i++)
printf("%d\n",(x0+i*(n/d))%n);
return true;
}
ACM数论-欧几里得与拓展欧几里得算法的更多相关文章
- ACM数论-欧几里得与拓展欧几里得
ACM数论——欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd ...
- 数论入门——斐蜀定理与拓展欧几里得算法
斐蜀定理 内容 斐蜀定理又叫贝祖定理,它的内容是这样的: 若$a,bin N$,那么对于任意x,y,方程$ax+by=gcd(a,b)*k(kin N)$一定有解,且一定有一组解使$ax+by=gcd ...
- <数论相关>欧几里得与拓展欧几里得证明及应用
欧几里得算法 欧几里得算法的复杂度为O(log(n)),是一个非常高效的求最大公约数算法. 在这里不证明欧几里得算法的复杂度,有兴趣的可以访问以下链接:http://blog.sina.com.cn/ ...
- 欧几里得 & 拓展欧几里得算法 解说 (Euclid & Extend- Euclid Algorithm)
欧几里得& 拓展欧几里得(Euclid & Extend-Euclid) 欧几里得算法(Euclid) 背景: 欧几里德算法又称辗转相除法.用于计算两个正整数a.b的最大公约数. -- ...
- POJ 1601 拓展欧几里得算法
学习链接:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 先来学习一下什么是欧几里得算法: 欧几里得原理是:两个整数 ...
- POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)
题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...
- gcd模板(欧几里得与扩展欧几里得、拓展欧几里得求逆元)
gcd(欧几里得算法辗转相除法): gcd ( a , b )= d : 即 d = gcd ( a , b ) = gcd ( b , a mod b ):以此式进行递归即可. 之前一直愚蠢地以为辗 ...
- GCD欧几里得的拓展算法
欧几里得算法的拓展主要是用于求解 : 已知整数 a, b,然后我们进行 ax + by == gcd(a , b) 的问题求解 那么如何进行求解呢?和欧几里得算法一样, 我们需要进行递归的方式进 ...
- Neko does Maths CodeForces - 1152C 数论欧几里得
Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...
随机推荐
- [Leetcode] Linked list cycle 判断链表是否有环
Given a linked list, determine if it has a cycle in it. Follow up:Can you solve it without using ext ...
- 【BZOJ 4034】[HAOI2015]树上操作 差分+dfs序+树状数组
我们只要看出来这道题 数组表示的含义就是 某个点到根节点路径权值和就行 那么我们可以把最终答案 看做 k*x+b x就是其深度 ,我们发现dfs序之后,修改一个点是差分一个区间,修改一个点的子树,可以 ...
- Exponial~(欧拉函数)~(发呆题)
Description Everybody loves big numbers (if you do not, you might want to stop reading at this point ...
- 用spring的@Validated注解和org.hibernate.validator.constraints.*的一些注解在后台完成数据校验
这个demo主要是让spring的@Validated注解和hibernate支持JSR数据校验的一些注解结合起来,完成数据校验.这个demo用的是springboot. 首先domain对象Foo的 ...
- css属性选择器应用
代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3. ...
- 转载:Java中的String与常量池
转载自http://developer.51cto.com/art/201106/266454.htm.感觉总结的不错,自己收藏一下. string是java中的字符串.String类是不可变的,对S ...
- 设置查看java的源程序
1.点 “window”-> "Preferences" -> "Java" -> "Installed JRES" 2. ...
- OOP第三次上机
上机问题 T1 CSet 还是熟悉的CSet,只是多了个构造函数以及收缩空间. T2 SingleTon 单例问题. 用一个指针保存唯一的实例,用户无法在外部直接新建实例,只能使用外部接口(函数),函 ...
- Educational Codeforces Round 40 A B C D E G
A. Diagonal Walking 题意 将一个序列中所有的\('RU'\)或者\('UR'\)替换成\('D'\),问最终得到的序列最短长度为多少. 思路 贪心 Code #include &l ...
- efi转bios详细说明
前言 制作好的efi格式的ubuntu15.10系统放到服务器主板上启动不了,于是将其改为bios格式,发现问题解决了,成功登入系统.下面是操作过程的一个记录. 测试环境 目标环境 系统: Ubunt ...