Strategic game(无向?)二分图最小点覆盖(Poj1463,Uva1292)
原题链接
此题求二分图的最小点覆盖,数值上等于该二分图的最大匹配。得知此结论可以将图染色,建有向图,然后跑匈牙利/网络流,如下。然而...
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN=2000+5;
int q[MAXN],hd1[MAXN],hd2[MAXN];
int lnk[MAXN];
bool vis[MAXN],bw[MAXN];
int n,ft,rr,cnt1,cnt2;
struct Edge
{
int t,n;
}e1[MAXN<<1],e2[MAXN<<1];
inline void build(int f,int t)
{
e1[++cnt1]=(Edge){t,hd1[f]};
hd1[f]=cnt1;
}
inline void build2(int f,int t)
{
e2[++cnt2]=(Edge){t,hd2[f]};
hd2[f]=cnt2;
}
void bfs()
{
ft=rr=0;
memset(bw,0,sizeof bw);
memset(vis,0,sizeof vis);
q[rr++]=0;
vis[0]=1;
bw[0]=1;
while(ft<rr)
{
int u=q[ft++];
for(int i=hd1[u];i;i=e1[i].n)
{
int v=e1[i].t;
if(!vis[v])
{
vis[v]=1;
bw[v]=bw[u]^1;
q[rr++]=v;
}
}
}
}
bool match(int u)
{
for(int i=hd2[u];i;i=e2[i].n)
{
int v=e2[i].t;
if(!vis[v])
{
vis[v]=1;
if(lnk[v]==-1||match(lnk[v]))
{
lnk[v]=u;
return 1;
}
}
}
return 0;
}
int main()
{
while(~scanf("%d",&n))
{
cnt1=cnt2=0;
memset(hd1,0,sizeof hd1);
memset(e1,0,sizeof e1);
memset(e2,0,sizeof e2);
memset(hd2,0,sizeof hd2);
memset(lnk,-1,sizeof lnk);
int from,m,to;
for(int i=0;i<n;++i)
{
scanf("%d:(%d)",&from,&m);
for(int i=1;i<=m;++i)
scanf("%d",&to),build(from,to),build(to,from);
}
bfs();
for(int k=0;k<n;++k)
{
if(bw[k])
{
for(int i=hd1[k];i;i=e1[i].n)
build2(k,e1[i].t);
}
}
int ans=0;
for(int i=0;i<n;++i)
{
if(bw[i])
{
memset(vis,0,sizeof vis);
if(match(i))
++ans;
}
}
printf("%d\n",ans);
}
return 0;
}
然而我看网络上流传的都是另一种做法,直接输出在原无向图的最大匹配除以2,却很少有人证明(可能是各位大佬都认为这太显然了不用证)。仔细思考这个结论还是比较显然的(虽然我还想了一会),这里给出简单的证明,原来匹配一次的边被分别从从左右两个方向匹配了一次,这样每天匹配边就被记录了两次,又因为是求得的是最大匹配数,所以左右两边的匹配都应是最大匹配,故求给定无向图求最大匹配可以直接在原图求最大匹配,答案为该数值除以2。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN=2000+5;
int hd[MAXN],lnk[MAXN];
bool vis[MAXN];
int n,cnt;
struct Edge
{
int t,n;
}e[MAXN<<1];
inline void build(int f,int t)
{
e[++cnt]=(Edge){t,hd[f]};
hd[f]=cnt;
}
bool match(int u)
{
for(int i=hd[u];i;i=e[i].n)
{
int v=e[i].t;
if(!vis[v])
{
vis[v]=1;
if(lnk[v]==-1||match(lnk[v]))
{
lnk[v]=u;
return 1;
}
}
}
return 0;
}
int main()
{
while(~scanf("%d",&n))
{
cnt=0;
memset(hd,0,sizeof hd);
memset(e,0,sizeof e);
memset(lnk,-1,sizeof lnk);
int from,m,to;
for(int i=0;i<n;++i)
{
scanf("%d:(%d)",&from,&m);
for(int i=1;i<=m;++i)
scanf("%d",&to),build(from,to),build(to,from);
}
int ans=0;
for(int i=0;i<n;++i)
{
memset(vis,0,sizeof vis);
if(match(i))
++ans;
}
printf("%d\n",ans>>1);
}
return 0;
}
还有DP解法,待填。
11.02UPD 树形DP解法
Strategic game(无向?)二分图最小点覆盖(Poj1463,Uva1292)的更多相关文章
- HihoCoder1127 二分图三·二分图最小点覆盖和最大独立集
二分图三·二分图最小点覆盖和最大独立集 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上次安排完相亲之后又过了挺长时间,大家好像都差不多见过面了.不过相亲这个事不是说 ...
- hihoCoder #1127 : 二分图二·二分图最小点覆盖和最大独立集
#1127 : 二分图二·二分图最小点覆盖和最大独立集 Time Limit:10000ms Case Time Limit:1000ms Memory Limit:256MB 描述 在上次安排完相亲 ...
- Asteroids POJ - 3041 二分图最小点覆盖
Asteroids POJ - 3041 Bessie wants to navigate her spaceship through a dangerous asteroid field in ...
- POJ2226 Muddy Fields(二分图最小点覆盖集)
题目给张R×C的地图,地图上*表示泥地..表示草地,问最少要几块宽1长任意木板才能盖住所有泥地,木板可以重合但不能盖住草地. 把所有行和列连续的泥地(可以放一块木板铺满的)看作点且行和列连续泥地分别作 ...
- POJ1325 Machine Schedule(二分图最小点覆盖集)
最小点覆盖集就是在一个有向图中选出最少的点集,使其覆盖所有的边. 二分图最小点覆盖集=二分图最大匹配(二分图最大边独立集) 这题A机器的n种模式作为X部的点,B机器的m种模式作为Y部的点: 每个任务就 ...
- hihoCoder #1127:二分图最小点覆盖和最大独立集
题目大意:求二分图最小点覆盖和最大独立集. 题目分析:如果选中一个点,那么与这个点相连的所有边都被覆盖,使所有边都被覆盖的最小点集称为最小点覆盖,它等于最大匹配:任意两个点之间都没有边相连的最大点集称 ...
- [POJ] 2226 Muddy Fields(二分图最小点覆盖)
题目地址:http://poj.org/problem?id=2226 二分图的题目关键在于建图.因为“*”的地方只有两种木板覆盖方式:水平或竖直,所以运用这种方式进行二分.首先按行排列,算出每个&q ...
- 二分图 最小点覆盖 poj 3041
题目链接:Asteroids - POJ 3041 - Virtual Judge https://vjudge.net/problem/POJ-3041 第一行输入一个n和一个m表示在n*n的网格 ...
- 四川第七届 D Vertex Cover(二分图最小点覆盖,二分匹配模板)
Vertex Cover frog has a graph with nn vertices v(1),v(2),…,v(n)v(1),v(2),…,v(n) and mm edges (v(a1), ...
随机推荐
- t-SNE and PCA
1.t-SNE 知乎 t-分布领域嵌入算法 虽然主打非线性高维数据降维,但是很少用,因为 比较适合应用于可视化,测试模型的效果 保证在低维上数据的分布与原始特征空间分布的相似性高 因此用来查看分类器的 ...
- PAT (Basic Level) Practice (中文)1041 考试座位号 (15 分)
每个 PAT 考生在参加考试时都会被分配两个座位号,一个是试机座位,一个是考试座位.正常情况下,考生在入场时先得到试机座位号码,入座进入试机状态后,系统会显示该考生的考试座位号码,考试时考生需要换到考 ...
- c语言中 char* 和 unsigned char* 的区别浅析(转)
原文:https://blog.csdn.net/guotianqing/article/details/77341657 背景最近在项目中遇到了一个编译警告,是因为定义的变量为char[],而在使用 ...
- 禁止PotPlayer自动添加同一目录内连续文件
问题描述 默认情况下PotPlayer会自动向播放列表添加相似文件 统一目录下大量连续文件会被同时加载 解决办法 参数选项-基本-基本设置-相似文件策略 设置为仅打开选定的文件
- mybatis第一天02
mybatis第二天02 1.映射文件之输入输出映射 1.1映射文件之输入映射类型(parameterType) 1.1.1简单类型 当parameterType为简单类型时,我们只需要直接填写“in ...
- Codeforce 25A - IQ test (唯一奇偶)
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of th ...
- Mapped Statements collection does not contain value for xxx
这是我第二次遇到的这个问题了,总结下. 第一次的问题是 mybatis的sqlSessionFactory的mapperLocations,配置的是这个路径下的所有映射文件,但是我没写的没有在该路径下 ...
- 创建登录WEB UI页面的Business role.
1: Define business role 2: business role 中可以指定 config key, 该config key可以用于UI configurationo determ ...
- [P5490] 【模板】扫描线 - 线段树
求 \(n\) 个矩形的面积并 Solution 将矩形转化为 \(y_1\) 位置的 + 修改 和 \(y_2\) 位置的 - 修改.然后按照 \(+y\) 顺序依次处理所有的修改,到达的一个新的位 ...
- R parallel包实现多线程1
并行执行 Yes! Well done! Socket clusters are initialized without variables, so a_global_var wasn't found ...