# 导入第三方模块
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import cluster
from sklearn.datasets.samples_generator import make_blobs

# 模拟数据集
X,y = make_blobs(n_samples = 2000, centers = [[-1,-2],[1,3]], cluster_std = [0.5,0.5], random_state = 1234)
# 将模拟得到的数组转换为数据框,用于绘图
plot_data = pd.DataFrame(np.column_stack((X,y)), columns = ['x1','x2','y'])
# 设置绘图风格
plt.style.use('ggplot')
# 绘制散点图(用不同的形状代表不同的簇)
sns.lmplot('x1', 'x2', data = plot_data, hue = 'y',markers = ['^','o'],
fit_reg = False, legend = False)
# 显示图形
plt.show()

# 导入第三方模块
from sklearn import cluster

# 构建Kmeans聚类和密度聚类
kmeans = cluster.KMeans(n_clusters=2, random_state=1234)
kmeans.fit(X)
dbscan = cluster.DBSCAN(eps = 0.5, min_samples = 10)
dbscan.fit(X)
# 将Kmeans聚类和密度聚类的簇标签添加到数据框中
plot_data['kmeans_label'] = kmeans.labels_
plot_data['dbscan_label'] = dbscan.labels_

# 绘制聚类效果图
# 设置大图框的长和高
plt.figure(figsize = (12,6))
# 设置第一个子图的布局
ax1 = plt.subplot2grid(shape = (1,2), loc = (0,0))
# 绘制散点图
ax1.scatter(plot_data.x1, plot_data.x2, c = plot_data.kmeans_label)
# 设置第二个子图的布局
ax2 = plt.subplot2grid(shape = (1,2), loc = (0,1))
# 绘制散点图(为了使Kmeans聚类和密度聚类的效果图颜色一致,通过序列的map“方法”对颜色作重映射)
ax2.scatter(plot_data.x1, plot_data.x2, c=plot_data.dbscan_label.map({-1:1,0:2,1:0}))
# 显示图形
plt.show()

# 导入第三方模块
from sklearn.datasets.samples_generator import make_moons

# 构造非球形样本点
X1,y1 = make_moons(n_samples=2000, noise = 0.05, random_state = 1234)
# 构造球形样本点
X2,y2 = make_blobs(n_samples=1000, centers = [[3,3]], cluster_std = 0.5, random_state = 1234)
# 将y2的值替换为2(为了避免与y1的值冲突,因为原始y1和y2中都有0这个值)
y2 = np.where(y2 == 0,2,0)
# 将模拟得到的数组转换为数据框,用于绘图
plot_data = pd.DataFrame(np.row_stack([np.column_stack((X1,y1)),np.column_stack((X2,y2))]), columns = ['x1','x2','y'])

# 绘制散点图(用不同的形状代表不同的簇)
sns.lmplot('x1', 'x2', data = plot_data, hue = 'y',markers = ['^','o','>'],
fit_reg = False, legend = False)
# 显示图形
plt.show()

# 构建Kmeans聚类和密度聚类
kmeans = cluster.KMeans(n_clusters=3, random_state=1234)
kmeans.fit(plot_data[['x1','x2']])
dbscan = cluster.DBSCAN(eps = 0.3, min_samples = 5)
dbscan.fit(plot_data[['x1','x2']])
# 将Kmeans聚类和密度聚类的簇标签添加到数据框中
plot_data['kmeans_label'] = kmeans.labels_
plot_data['dbscan_label'] = dbscan.labels_

# 绘制聚类效果图
# 设置大图框的长和高
plt.figure(figsize = (12,6))
# 设置第一个子图的布局
ax1 = plt.subplot2grid(shape = (1,2), loc = (0,0))
# 绘制散点图
ax1.scatter(plot_data.x1, plot_data.x2, c = plot_data.kmeans_label)
# 设置第二个子图的布局
ax2 = plt.subplot2grid(shape = (1,2), loc = (0,1))
# 绘制散点图(为了使Kmeans聚类和密度聚类的效果图颜色一致,通过序列的map“方法”对颜色作重映射)
ax2.scatter(plot_data.x1, plot_data.x2, c=plot_data.dbscan_label.map({-1:1,0:0,1:3,2:2}))
# 显示图形
plt.show()

# 构造两个球形簇的数据样本点
X,y = make_blobs(n_samples = 2000, centers = [[-1,0],[1,0.5]], cluster_std = [0.2,0.45], random_state = 1234)
# 将模拟得到的数组转换为数据框,用于绘图
plot_data = pd.DataFrame(np.column_stack((X,y)), columns = ['x1','x2','y'])
# 绘制散点图(用不同的形状代表不同的簇)
sns.lmplot('x1', 'x2', data = plot_data, hue = 'y',markers = ['^','o'],
fit_reg = False, legend = False)
# 显示图形
plt.show()

# 设置大图框的长和高
plt.figure(figsize = (16,5))
# 设置第一个子图的布局
ax1 = plt.subplot2grid(shape = (1,3), loc = (0,0))
# 层次聚类--最小距离法
agnes_min = cluster.AgglomerativeClustering(n_clusters = 2, linkage='ward')
agnes_min.fit(X)
# 绘制聚类效果图
ax1.scatter(X[:,0], X[:,1], c=agnes_min.labels_)

# 设置第二个子图的布局
ax2 = plt.subplot2grid(shape = (1,3), loc = (0,1))
# 层次聚类--最大距离法
agnes_max = cluster.AgglomerativeClustering(n_clusters = 2, linkage='complete')
agnes_max.fit(X)
ax2.scatter(X[:,0], X[:,1], c=agnes_max.labels_)

# 设置第三个子图的布局
ax2 = plt.subplot2grid(shape = (1,3), loc = (0,2))
# 层次聚类--平均距离法
agnes_avg = cluster.AgglomerativeClustering(n_clusters = 2, linkage='average')
agnes_avg.fit(X)
plt.scatter(X[:,0], X[:,1], c=agnes_avg.labels_)
plt.show()

# 读取外部数据
Province = pd.read_excel(r'F:\\python_Data_analysis_and_mining\\16\\Province.xlsx')
Province.head()
# 绘制出生率与死亡率散点图
plt.scatter(Province.Birth_Rate, Province.Death_Rate, c = 'steelblue')
# 添加轴标签
plt.xlabel('Birth_Rate')
plt.ylabel('Death_Rate')
# 显示图形
plt.show()

# 读入第三方包
from sklearn import preprocessing

# 中文乱码和坐标轴负号的处理
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
# 选取建模的变量
predictors = ['Birth_Rate','Death_Rate']
# 变量的标准化处理
X = preprocessing.scale(Province[predictors])
X = pd.DataFrame(X)
# 构建空列表,用于保存不同参数组合下的结果
res = []
# 迭代不同的eps值
for eps in np.arange(0.001,1,0.05):
# 迭代不同的min_samples值
for min_samples in range(2,10):
dbscan = cluster.DBSCAN(eps = eps, min_samples = min_samples)
# 模型拟合
dbscan.fit(X)
# 统计各参数组合下的聚类个数(-1表示异常点)
n_clusters = len([i for i in set(dbscan.labels_) if i != -1])
# 异常点的个数
outliners = np.sum(np.where(dbscan.labels_ == -1, 1,0))
# 统计每个簇的样本个数
stats = str(pd.Series([i for i in dbscan.labels_ if i != -1]).value_counts().values)
res.append({'eps':eps,'min_samples':min_samples,'n_clusters':n_clusters,'outliners':outliners,'stats':stats})
# 将迭代后的结果存储到数据框中
df = pd.DataFrame(res)
# 根据条件筛选合理的参数组合
df.loc[df.n_clusters == 3, :]
# 利用上述的参数组合值,重建密度聚类算法
dbscan = cluster.DBSCAN(eps = 0.801, min_samples = 3)
# 模型拟合
dbscan.fit(X)
Province['dbscan_label'] = dbscan.labels_
# 绘制聚类聚类的效果散点图
sns.lmplot(x = 'Birth_Rate', y = 'Death_Rate', hue = 'dbscan_label', data = Province,
markers = ['*','d','^','o'], fit_reg = False, legend = False)
# 添加省份标签
for x,y,text in zip(Province.Birth_Rate,Province.Death_Rate, Province.Province):
plt.text(x+0.1,y-0.1,text, size = 8)
# 添加参考线
plt.hlines(y = 5.8, xmin = Province.Birth_Rate.min(), xmax = Province.Birth_Rate.max(),
linestyles = '--', colors = 'red')
plt.vlines(x = 10, ymin = Province.Death_Rate.min(), ymax = Province.Death_Rate.max(),
linestyles = '--', colors = 'red')
# 添加轴标签
plt.xlabel('Birth_Rate')
plt.ylabel('Death_Rate')
# 显示图形
plt.show()

# 利用最小距离法构建层次聚类
agnes_min = cluster.AgglomerativeClustering(n_clusters = 3, linkage='ward')
# 模型拟合
agnes_min.fit(X)
Province['agnes_label'] = agnes_min.labels_
# 绘制层次聚类的效果散点图
sns.lmplot(x = 'Birth_Rate', y = 'Death_Rate', hue = 'agnes_label', data = Province,
markers = ['d','^','o'], fit_reg = False, legend = False)
# 添加轴标签
plt.xlabel('Birth_Rate')
plt.ylabel('Death_Rate')
# 显示图形
plt.show()

# 导入第三方模块
from sklearn import metrics

# 构造自定义函数,用于绘制不同k值和对应轮廓系数的折线图
def k_silhouette(X, clusters):
K = range(2,clusters+1)
# 构建空列表,用于存储个中簇数下的轮廓系数
S = []
for k in K:
kmeans = cluster.KMeans(n_clusters=k)
kmeans.fit(X)
labels = kmeans.labels_
# 调用字模块metrics中的silhouette_score函数,计算轮廓系数
S.append(metrics.silhouette_score(X, labels, metric='euclidean'))

# 中文和负号的正常显示
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
# 设置绘图风格
plt.style.use('ggplot')
# 绘制K的个数与轮廓系数的关系
plt.plot(K, S, 'b*-')
plt.xlabel('簇的个数')
plt.ylabel('轮廓系数')
# 显示图形
plt.show()

# 聚类个数的探索
k_silhouette(X, clusters = 10)

# 利用Kmeans聚类
kmeans = cluster.KMeans(n_clusters = 3)
# 模型拟合
kmeans.fit(X)
Province['kmeans_label'] = kmeans.labels_
# 绘制Kmeans聚类的效果散点图
sns.lmplot(x = 'Birth_Rate', y = 'Death_Rate', hue = 'kmeans_label', data = Province,
markers = ['d','^','o'], fit_reg = False, legend = False)
# 添加轴标签
plt.xlabel('Birth_Rate')
plt.ylabel('Death_Rate')
plt.show()

吴裕雄 数据挖掘与分析案例实战(15)——DBSCAN与层次聚类分析的更多相关文章

  1. 吴裕雄 数据挖掘与分析案例实战(14)——Kmeans聚类分析

    # 导入第三方包import pandas as pdimport numpy as np import matplotlib.pyplot as pltfrom sklearn.cluster im ...

  2. 吴裕雄 数据挖掘与分析案例实战(3)——python数值计算工具:Numpy

    # 导入模块,并重命名为npimport numpy as np# 单个列表创建一维数组arr1 = np.array([3,10,8,7,34,11,28,72])print('一维数组:\n',a ...

  3. 吴裕雄 数据挖掘与分析案例实战(13)——GBDT模型的应用

    # 导入第三方包import pandas as pdimport matplotlib.pyplot as plt # 读入数据default = pd.read_excel(r'F:\\pytho ...

  4. 吴裕雄 数据挖掘与分析案例实战(12)——SVM模型的应用

    import pandas as pd # 导入第三方模块from sklearn import svmfrom sklearn import model_selectionfrom sklearn ...

  5. 吴裕雄 数据挖掘与分析案例实战(10)——KNN模型的应用

    # 导入第三方包import pandas as pd # 导入数据Knowledge = pd.read_excel(r'F:\\python_Data_analysis_and_mining\\1 ...

  6. 吴裕雄 数据挖掘与分析案例实战(8)——Logistic回归分类模型

    import numpy as npimport pandas as pdimport matplotlib.pyplot as plt # 自定义绘制ks曲线的函数def plot_ks(y_tes ...

  7. 吴裕雄 数据挖掘与分析案例实战(7)——岭回归与LASSO回归模型

    # 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import mod ...

  8. 吴裕雄 数据挖掘与分析案例实战(5)——python数据可视化

    # 饼图的绘制# 导入第三方模块import matplotlibimport matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['S ...

  9. 吴裕雄 数据挖掘与分析案例实战(4)——python数据处理工具:Pandas

    # 导入模块import pandas as pdimport numpy as np # 构造序列gdp1 = pd.Series([2.8,3.01,8.99,8.59,5.18])print(g ...

随机推荐

  1. Server对象,HttpServerUtility类,获取服务器信息

    在Asp.net WebForm中,Server对象是HttpServerUtility类的实例.看下图: 而在Asp.net MVC中,Server对象是HttpServerUtilityBase对 ...

  2. python 典型文件结构

    #/usr/bin/env/ python #(1) 起始行 "this is a test module" #(2) 模块文档(文档字符串) import sys import ...

  3. ML(4.1): R C4.5

    决策树模型中最为流行的是C4.5算法,  该类算法70年代末,J Ross Quinlan提出ID3算法,此算法的目的在于减少树的深度.但是忽略了叶子数目的研究.1993年,Quinlan本人以ID3 ...

  4. linux vnc 安装

    http://blog.csdn.net/mchdba/article/details/49306383

  5. TFS 2012如何切换用户

    TFS 2012如何切换用户 编写人:左丘文 2018-3-8 春节假期来后,准备干活的时候,才发现TFS账户登入的是另外一个账户.现在想切换为自己的账户时,发现Vs 2012中没找到可以登出的功能, ...

  6. 开发框架-开发组合:LAMP(Web应用软件组合)

    ylbtech-开发框架-开发组合:LAMP(Web应用软件组合) LAMP是指一组通常一起使用来运行动态网站或者服务器的自由软件名称首字母缩写. 1.返回顶部 1. 中文名:lamp 外文名:lam ...

  7. 开源框架:Apache的DBUtils框架

    开源框架:Apache的DBUtils框架 Commons DbUtils 1.4 API 开源框架:DBUtils使用详解 Download Apache Commons DbUtils  官方文档

  8. GC 提前晋升

    如果Survivor 空间不足, 那么从 Eden 存活下来的和原来在 Survivor 空间中不够老的对象占满 Survivor 后, 就会提升到老年代, 可以看到这一轮 Minor GC 后老年代 ...

  9. 给iOS开发新手送点福利,简述UIPikerView的属性和用法

    1.   numberOfComponents:返回UIPickerView当前的列数 NSInteger num = _pickerView.numberOfComponents; NSLog( @ ...

  10. 深度学习RNN实现股票预测实战(附数据、代码)

    背景知识 最近再看一些量化交易相关的材料,偶然在网上看到了一个关于用RNN实现股票预测的文章,出于好奇心把文章中介绍的代码在本地跑了一遍,发现可以work.于是就花了两个晚上的时间学习了下代码,顺便把 ...