bzoj 1874 取石子游戏 题解 & SG函数初探
【原题】
1874: [BeiJing2009 WinterCamp]取石子游戏
Time Limit: 5 Sec Memory Limit: 162 MB
Submit: 334 Solved: 122
[Submit][Status]
Description
Input
Output
Sample Input
7
6
9
3
2
1
2
Sample Output
1 1
Hint
例子中共同拥有四堆石子,石子个数分别为7、6、9、3,每人每次能够从不论什么一堆石子中取出1个或者2个石子,小H有必胜策略,其实仅仅要从第一堆石子中取一个石子就可以。
数据规模和约定
数据编号 N范围 Ai范围 数据编号 N范围 Ai范围
1 N=2 Ai≤10 6 N≤10 Ai≤10
2 N=2 Ai≤1000 7 N≤10 Ai≤100
3 N=3 Ai≤100 8 N≤10 Ai≤1000
4 N≤10 Ai≤4 9 N≤10 Ai≤1000
5 N≤10 Ai≤7 10 N≤10 Ai≤1000
对于所有数据,M≤10,Bi≤10
HINT
Source
【分析】事实上我是心血来潮想大概学一下博弈论有关的题目。
博文推荐:http://www.cnblogs.com/frog112111/p/3199780.html
首先是最简单的Nim游戏:有N堆石子,每次从一堆中取出不为空的石子,不能取者为负。推断先手是否必胜。有一个小小的结论:后手必胜当且仅当全部石子的异或和为0。
再麻烦一点。规定每次取的石子个数,比方每次仅仅能取1,3,4。我们先考虑仅仅有一堆石子。
(下面摘自那个博客)
首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。比如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于一个给定的有向无环图,定义关于图的每一个顶点的Sprague-Grundy函数g例如以下:g(x)=mex{ g(y) | y是x的后继 },这里的g(x)即sg[x]
sg[0]=0,f[]={1,3,4},
x=1时,能够取走1-f{1}个石子,剩余{0}个,mex{sg[0]}={0},故sg[1]=1;
x=2时,能够取走2-f{1}个石子,剩余{1}个,mex{sg[1]}={1},故sg[2]=0;
x=3时,能够取走3-f{1,3}个石子,剩余{2,0}个,mex{sg[2],sg[0]}={0,0},故sg[3]=1;
x=4时,能够取走4-f{1,3,4}个石子,剩余{3,1,0}个,mex{sg[3],sg[1],sg[0]}={1,1,0},故sg[4]=2;
x=5时,能够取走5-f{1,3,4}个石子,剩余{4,2,1}个,mex{sg[4],sg[2],sg[1]}={2,0,1},故sg[5]=3;
以此类推.....
x 0 1 2 3 4 5 6 7 8....
sg[x] 0 1 0 1 2 3 2 0 1....
在这里,那个异或和的结论还是正确的。假设sg[N]=0,那么就存在后手必胜的策略。
可是假设有多堆石子,应该怎么办?直接把所有的SG所有异或起来,也是推断是否是0。
知道了这些结论,那道题也就成了傻题。前面是裸的SG,后面再枚举一下就可以。
【代码】
#include<cstdio>
#define N 1005
using namespace std;
int sg[N],f[N],hash[N],a[N],sum,temp,i,j,n,m;
void get_SG(int up)
{
sg[0]=0;
for (int i=1;i<=up;i++)
{
for (int j=1;f[j]<=i&&j<=m;j++)
hash[sg[i-f[j]]]=i;
for (int j=0;j<=up;j++)
if (hash[j]!=i) {sg[i]=j;break;}
}
}
int main()
{
scanf("%d",&n);
for (i=1;i<=n;i++)
scanf("%d",&a[i]);
scanf("%d",&m);
for (i=1;i<=m;i++)
scanf("%d",&f[i]);
get_SG(1000);
for (i=1;i<=n;i++) sum^=sg[a[i]];
if (!sum) {printf("NO");return 0;}
for (i=1;i<=n;i++)
{
temp=sum^sg[a[i]];
for (j=1;f[j]<=a[i]&&j<=m;j++)
if (!(temp^sg[a[i]-f[j]]))
{
printf("YES\n%d %d",i,f[j]);
return 0;
}
}
}
bzoj 1874 取石子游戏 题解 & SG函数初探的更多相关文章
- [BZOJ 1874] [BeiJing2009 WinterCamp] 取石子游戏 【博弈论 | SG函数】
题目链接:BZOJ - 1874 题目分析 这个是一种组合游戏,是许多单个SG游戏的和. 就是指,总的游戏由许多单个SG游戏组合而成,每个SG游戏(也就是每一堆石子)之间互不干扰,每次从所有的单个游戏 ...
- BZOJ 1874 取石子游戏 - SG函数
Description $N$堆石子, $M$种取石子的方式, 最后取石子的人赢, 问先手是否必胜 $A_i <= 1000$,$ B_i <= 10$ Solution 由于数据很小, ...
- BZOJ 1874 取石子游戏 (NIM游戏)
题解:简单的NIM游戏,直接计算SG函数,至于找先手策略则按字典序异或掉,去除石子后再异或判断,若可行则直接输出. #include <cstdio> const int N=1005; ...
- [BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】
题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...
- BZOJ 1413 取石子游戏(DP)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1413 题意:n堆石子排成一排.每次只能在两侧的两堆中选择一堆拿.至少拿一个.谁不能操作谁 ...
- nyoj913 取石子(十) SG函数 + Nimm博弈
思路: 第一堆:SG = n % 3; 第二堆:无规律,打表即可,用hash比set快很多; 第三堆:SG = n; 第四堆:无规律 第五堆:SG = n % 2; 第六堆:SG = n % (i + ...
- 【洛谷2252&HDU1527】取石子游戏(博弈论)
题面 HDU1527 取石子游戏 洛谷2252 取石子游戏 题解 裸的威佐夫博弈 #include<iostream> #include<cmath> using namesp ...
- BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]
小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如 ...
- BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)
Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 871 Solved: 365[Submit][Status][Discuss] Description ...
随机推荐
- nohup sort -k1 -n -t$'\t' ./bigfile.16 -o./test/bigfile.16.ok &
nohup sort -k1 -n -t$'\t' ./bigfile.16 -o./test/bigfile.16.ok &
- 18.如何自我Struts2它Struts2标签和综合汇总文章有点早
18.如何自我Struts2它Struts2标签和综合汇总文章有点早[视频] 之前写了一篇"打算做一个视频教程探讨怎样自学计算机相关的技术",优酷上传不了.仅仅好传到百度云上: h ...
- 移动App測试实战:顶级互联网企业软件測试和质量提升最佳实践
这篇是计算机类的优质预售推荐>>>><移动App測试实战:顶级互联网企业软件測试和质量提升最佳实践> 国内顶级互联网公司測试实战经验总结.阿里.腾讯.京东.携程.百 ...
- dom4j的用法
package xml; import java.io.FileWriter; import java.io.IOException; import java.util.Iterator; impor ...
- 使用U盘进行Linux系统的安装
由于目前很多服务器已经本身不配光驱了,最近测试了下使用U盘进行Linux系统的安装,过程比较简单,需要注意的地方如下: 1.找一台linux主机,插入U盘,执行fdisk -l,识别到U盘. 2.将需 ...
- hdu3605(最大流+状态压缩)
传送门:Escape 题意:给出每个人适合住的星球信息和该星球能住多少人 ,第一行给出n m 代表有 n 个人 m 个星球,然后接下来n行每行m个数字 1代表适合第 i 个星球 0 代表不适合第 i ...
- Android设计模式(二)--策略模式
1.定义: The Strategy Pattern defines a family of algorithms,encapsulates each one,and makes them inter ...
- Android中倒计时代码
布局: maina.xml <DigitalClock android:id="@+id/myClock" android:layout_width="wrap_c ...
- Qrcode生成二维码支持中文,带图片,带文字
1.下载Qrcode库源码, 下载地址:http://www.codeproject.com/Articles/20574/Open-Source-QRCode-Library2.打开源码时, 部分类 ...
- C++ 中获取 可变形參函数中的參数
#include <iostream> #include <stdarg.h> using namespace std; int ArgFunc(const char * st ...