Why do Antennas Radiate?
Obtaining an intuitive idea for why antennas radiate is helpful in understanding the fundamentals of antennas. On this page, I'll attempt to give a low-key explanation with no regard to mathematics on how and why antennas radiate electromagnetic fields.
First, let's start with some basic physics. There is electric charge - this is a quantity of nature (like mass or weight or density) that every object possesses. You and I are most likely electrically neutral - we don't have a net charge that is positive or negative. There exists in every atom in the universe particles that contain positive and negative charge (protons and electrons, respectively). Some materials (like metals) that are very electrically conductive have loosely bound electrons. Hence, when a voltage is applied across a metal, the electrons travel around a circuit - this flow of electrons is electric current (measured in Amps).
Let us get back to charge for a moment. Suppose that for some reason, there is a negatively charged particle sitting somewhere in space. The universe has decided, for unknown reasons, that all charged particles will have an associated electric field with them. This is illustrated in Figure 1.
Figure 1. A negative charge has an associated Electric Field with it, everywhere in space.
So this negatively charged particle produces an electric field around it, everywhere in space. The Electric Field is a vector quantity - it has a magnitude (how strong the field strength is) and a direction (which direction does the field point). The field strength dies off (becomes smaller in magnitude) as you move away from the charge. Further, the magnitude of the E-field depends on how much charge exists. If the charge is positive, the E-field lines point away from the charge.
So this negatively charged particle produces an electric field around it, everywhere in space. The Electric Field is a vector quantity - it has a magnitude (how strong the field strength is) and a direction (which direction does the field point). The field strength dies off (becomes smaller in magnitude) as you move away from the charge. Further, the magnitude of the E-field depends on how much charge exists. If the charge is positive, the E-field lines point away from the charge.
The universe has also decided (again, for no apparent reason) that disturbances due to moving (or accelerating) charges will propagate away from the charge at the speed of light - c0 = 300,000,000 meters/second. This means the electric fields around the charge will be disturbed, and this disturbance propagates away from the charge. This is illustrated in Figure 2.
Figure 2. The E-fields when the charge is accelerated.
Once the charge is accelerated, the fields need to re-align themselves. Remember, the fields want to surround the charge exactly as they did in Figure 1. However, the fields can only respond to events at the speed of light. Hence, if a point is very far away from the charge, it will take time for the disturbance (or change in electric fields) to propagate to the point. This is illustrated in Figure 2.
In Figure 2, we have 3 regions. In the light blue (inner) region, the fields close to the charge have readapted themselves and now line up as they do in Figure 1. In the white region (outermost), the fields are still undisturbed and have the same magnitude and direction as they would if the charge had not moved. In the pink region, the fields are changing - from their old magnitude and direction to their new magnitude and direction.
Hence, we have arrived at the fundamental reason for radiation - the fields change because charges are accelerated. The fields always try to align themselves as in Figure 1 around charges. If we can produce a moving set of charges (this is simply electric current), then we will have radiation.
Now, you may have some questions.
First - if all accelerating electric charges radiate, then the wires that connect my computer to the wall should be antennas, correct? The charges on them are oscillating at 60 Hertz as the current travels so this should yield radiation, correct?
Answer: Yes. Your wires do act as antennas. However, they are very poor antennas. The reason (among other things), is that the wires that carry power to your computer are a transmission line - they carry current to your computer (which travels to one of your battery's terminals and out the other terminal) and then they carry the current away from your computer (all current travels in a circuit or loop). Hence, the radiation from one wire is cancelled by the current flowing in the adjacent wire (that is travelling the opposite direction).
Another question that will arise is - if its so simple, then everything could be an antenna. Why don't I just use a metal paper clip as an antenna, hook it up to my receiver and then forget all about antenna theory?
Answer: A paper clip could definitely act as an antenna if you get current flowing on the antenna. However, it is not so simple to do this. The impedance of the paper clip will control how much power your receiver or transmitter could deliver to the paper clip (i.e. whether or not you could get any current flowing on the paper clip at all). The impedance will depend on what frequency you are operating at. Hence, the paper clip will work at certain frequencies as an antenna. However, you will have to know much more about antennas before you can say when and it may work in a given situation.
--------------
In summary, all radiation is caused by accelerating charges which produce changing electric fields. And due to Maxwell's Equations, changing electric fields give rise to changing magnetic fields, and hence we have electromagnetic radiation. The subject of antenna theory is concerned with transferring power from your receiver (the energy is contained in voltages and currents) into electromagnetic radiation (where the energy is contained in the E- and H-fields) travelling away from the antenna. This requires the impedance of your antenna to be roughly matched to your receiver, and that the currents that cause radiation add up in-phase (that is, they don't cancel each other out as they would in a transmission line). A multitude of antenna types produce ways of achieving this, and you can find descriptions about them on the antenna list page.
来源:http://www.antenna-theory.com/basics/whyantennasradiate.php
Why do Antennas Radiate?的更多相关文章
- 扫描线 - UVALive - 6864 Strange Antennas
Strange Antennas Problem's Link: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=87213 M ...
- UVALive - 6864 Strange Antennas 扫描线
题目链接: http://acm.hust.edu.cn/vjudge/problem/87213 Strange Antennas Time Limit: 3000MS 题意 一个雷达能够辐射到的范 ...
- AT3912 Antennas on Tree
AT3912 Antennas on Tree %%zzt 只能考虑性质了. 把最后选择的k个点的连通块求出来,连通块内部的点表示都是互异的 连通块外部的点只能形成若干条链,并且这k个点的每一个最多与 ...
- uvalive6468,51cthink1419 Strange Antennas (离散化)
题意: 在一个 n x n 的平面上,给定 m 个等腰直角三角形(各点均为整数),问该平面上被三角形覆盖奇数次的点有多少个. 思路: 由于 n 较大,不能模拟解决,故使用离散化思想. 考虑每一行有多少 ...
- Radio Basics for RFID
Radio Basics for RFID The following is excerpted from Chapter 3: Radio Basics for UHF RFID from the ...
- RFID 基础/分类/编码/调制/传输
不同频段的RFID产品会有不同的特性,本文详细介绍了无源的感应器在不同工作频率产品的特性以及主要的应用. 目前定义RFID产品的工作频率有低频.高频和甚高频的频率范围内的符合不同标准的不同的产品,而且 ...
- Half Wavelength Dipole Antenna
Reference : 1. wikipedia The dipole antenna is the simplest and most widely used class of antenna.It ...
- IFA Basics
The inverted-F antenna is shown in Figure 1. While this antenna appears to be a wire antenna, after ...
- linux查看端口及端口详解
今天现场查看了TCP端口的占用情况,如下图 红色部分是IP,现场那边问我是不是我的程序占用了tcp的链接,,我远程登陆现场查看了一下,这种类型的tcp链接占用了400多个,,后边查了一下资料,说E ...
随机推荐
- Bzoj3566/洛谷P4284 [SHOI2014]概率充电器(概率dp)
题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直 ...
- 洛谷——P1609 最小回文数
题目描述 回文数是从左向右读和从右向左读结果一样的数字串. 例如:121.44 和3是回文数,175和36不是. 对于一个给定的N,请你寻找一个回文数P,满足P>N. 满足这样条件的回文数很多, ...
- Flask实战第38天:前台模型创建
安装shortuuid pip install shortuuid 编辑front.models.py from exts import db import shortuuid from werkze ...
- android用户界面的教程实例---转自qianqianlianmeng的博客
1.android用户界面之AlarmManager教程实例汇总http://www.apkbus.com/android-48405-1-1.html2.android用户界面之文本编辑教程实例汇总 ...
- Git Bash 将本地代码提交到Github
前提:已拥有Token,并且把本地的Token配置到了自己的Github里面(没有Token的自行去百度如何配置Token) 测试一下自己的连接 ssh -T git@github.com 本地操作: ...
- EasyUI学习总结(一)——EasyUI入门(转载)
本文转载自:http://www.cnblogs.com/xdp-gacl/p/4075079.html 一.EasyUI下载 EasyUI官方下载地址:http://www.jeasyui.com/ ...
- hdu 6047 Maximum Sequence 贪心
Description Steph is extremely obsessed with “sequence problems” that are usually seen on magazines: ...
- 【BZOJ 3238】【AHOI 2013】差异
http://www.lydsy.com/JudgeOnline/problem.php?id=3238 后缀数组裸题但是\(5\times 10^5\)貌似常数有点大就过不了?(我的sa常数那么大想 ...
- CSS 笔记——定位尺寸
3. 定位尺寸 -> 尺寸 (1)height 基本语法 height : auto | length 语法取值 auto : 默认值.无特殊定位,根据HTML定位规则分配 length : 由 ...
- 如何通俗理解——>集群、负载均衡、分布式
转自:周洲 (Julie) 在“高并发,海量数据,分布式,NoSql,云计算......”概念满天飞的年代,相信不少朋友都听说过甚至常与人提起“集群,负载均衡”等,但不是所有人都有机会真正接触到这些技 ...