LOJ#10064. 「一本通 3.1 例 1」黑暗城堡

题目描述

你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度。

城堡是树形的并且满足下面的条件:

设$D_i$为如果所有的通道都被修建,第$i$号房间与第$1$号房间的最短路径长度;

而$S_i$为实际修建的树形城堡中第$i$号房间与第$1$号房间的路径长度;

要求对于所有整数$i(1\le i\le N)$,有$S_i= D_i$成立。

你想知道有多少种不同的城堡修建方案。当然,你只需要输出答案对$2^{31}-1$取模之后的结果就行了。

输入格式

第一行为两个由空格隔开的整数$N, M$;

第二行到第$M+1$行为$3$个由空格隔开的整数$x, y, l$:表示$x$号房间与$y$号房间之间的通道长度为$l$。

输出格式

一个整数:不同的城堡修建方案数对$2^{31}-1$取模之后的结果。

样例

样例输入

4 6
1 2 1
1 3 2
1 4 3
2 3 1
2 4 2
3 4 1

样例输出

6

样例说明

一共有$4$个房间,$6$条道路,其中$1$号和$2$号,$1$号和$3$号,$1$号和$4$号,$2$号和$3$号,$2$号和$4$号,$3$号和$4$号房间之间的通道长度分别为$1$,$2$,$3$,$1$,$2$,$1$。

而不同的城堡修建方案数对$2^{31} -1$取模之后的结果为$6$。

数据范围与提示

对于全部数据,$1\le N\le 1000$,$1\le M\le \frac{N(N-1)}{2}$,$1\le l\le 200$。


题解Here!

据说标解是最短路径树?但是本蒟蒻不会啊。。。

然后开始$YY$。。。

首先一发最短路没的说。

我直接$SPFA$的,出题人良心,没有卡$SPFA$。

然后把所有可能在生成树上的边提出来。

我们会发现这些边形成了一个$DAG$。

然后对于每个点(除了$1$),我们一定至少有一种选择方案,将它挂在某个节点的下面,成为儿子节点。

所以我们把这些点的选择方案数乘起来就是我们的答案。

而每个点$i$的选择方案就是这个点在$DAG$中的入度$indegree[i]$。

答案可以表示成:$$Ans=\prod_{i=2}^n indegree[i]$$

然后就没了。

记得开$long\ long$。

附代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<queue>
#define MAXN 1010
#define MAX 999999999
#define MOD 2147483647LL
using namespace std;
int n,m,c=1;
int head[MAXN],path[MAXN];
long long ans=1,indegree[MAXN];
bool vis[MAXN];
struct Grpah{
int next,to,w;
}edge[MAXN*MAXN];
inline int read(){
int date=0,w=1;char c=0;
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
return date*w;
}
inline int relax(int u,int v,int w){
if(path[v]>path[u]+w){
path[v]=path[u]+w;
return 1;
}
return 0;
}
inline void add_edge(int u,int v,int w){
edge[c].to=v;edge[c].w=w;edge[c].next=head[u];head[u]=c++;
edge[c].to=u;edge[c].w=w;edge[c].next=head[v];head[v]=c++;
}
void spfa(){
int u,v;
queue<int> q;
for(int i=1;i<=n;i++){path[i]=MAX;vis[i]=false;}
path[1]=0;
vis[1]=true;
q.push(1);
while(!q.empty()){
u=q.front();
q.pop();
vis[u]=false;
for(int i=head[u];i;i=edge[i].next){
v=edge[i].to;
if(relax(u,v,edge[i].w)&&!vis[v]){
vis[v]=true;
q.push(v);
}
}
}
}
void work(){
int u,v,w;
for(int i=1;i<c;i+=2){
u=edge[i+1].to;v=edge[i].to;w=edge[i].w;
if(path[u]+w==path[v])indegree[v]++;
if(path[v]+w==path[u])indegree[u]++;
}
for(int i=2;i<=n;i++)ans=ans*indegree[i]%MOD;
printf("%lld\n",ans);
}
void init(){
int u,v,w;
n=read();m=read();
for(int i=1;i<=m;i++){
u=read();v=read();w=read();
add_edge(u,v,w);
}
spfa();
}
int main(){
init();
work();
return 0;
}

LOJ#10064. 「一本通 3.1 例 1」黑暗城堡的更多相关文章

  1. LOJ #10131 「一本通 4.4 例 2」暗的连锁

    LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...

  2. Loj 10115 「一本通 4.1 例 3」校门外的树 (树状数组)

    题目链接:https://loj.ac/problem/10115 题目描述 原题来自:Vijos P1448 校门外有很多树,学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的 ...

  3. LOJ#10065. 「一本通 3.1 例 2」北极通讯网络

    题目链接:https://loj.ac/problem/10065 题目描述 原题来自:Waterloo University 2002 北极的某区域共有 nnn 座村庄,每座村庄的坐标用一对整数 ( ...

  4. LOJ#10106. 「一本通 3.7 例 2」单词游戏

    题目链接:https://loj.ac/problem/10106 题目描述 来自 ICPC CERC 1999/2000,有改动. 有 NNN 个盘子,每个盘子上写着一个仅由小写字母组成的英文单词. ...

  5. LOJ #10132. 「一本通 4.4 例 3」异象石

    题目地址 LOJ 题解 神仙思路.思路参考自<算法竞赛进阶指南>. 考虑维护dfs序中相邻两个石头的距离,那么每次?的答案就是sum/2(首尾算相邻) 然后维护一下拿个平衡树/set维护一 ...

  6. LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci

    题目链接 题目大意 $$F[i]=F[i-1]+F[i-2]\ (\ F[1]=1\ ,\ F[2]=1\ )$$ $$T[i]=F[1]+2F[2]+3F[3]+...+nF[n]$$ 求$T[n] ...

  7. LOJ 10138 -「一本通 4.5 例 1」树的统计

    树链剖分模板题,详见这篇博客.

  8. LOJ 10155 - 「一本通 5.2 例 3」数字转换

    前言 从现在开始,这个博客要写一些题解了.起初,开这个博客只是好玩一样,没事就写写CSS.JS,然后把博客前端搞成了现在这个样子.以前博客只是偶尔记录一些东西,刷题也从来不记录,最近受一些学长的影响, ...

  9. loj #10001. 「一本通 1.1 例 2」种树

    题面 解题思路 贪心,首先按右端点排序,然后从小往大扫,因为要求树最少,所以要尽量放在右端点.然后开个bool数组判断是否种过树即可. 代码 #include<iostream> #inc ...

随机推荐

  1. 不删除记录的表CRUD的常见处置

    为什么不删除记录,因为这些记录只是暂时不用了,以后还是有可能会用到的,比如说统计:另外一些主键外键依赖级联删除的场合也不好真删的,容易批量删除.真删了就不容易恢复回来了. 一般做法是,增加一个avai ...

  2. IO流(一)File类

    1.File类:表示文件和目录路径的抽象的表示形式,可以实现文件的创建,删除,重命名等,是唯一与文件本 有关的操作类. 2.File类的API定义:public class File extends ...

  3. JAVA Eclipse中如何简易的实现消息机制

    大部分情况下,我们需要实现的消息机制无非是某个类得到了数据,需要传递到某个主界面上去显示,可以把这个消息在类中做成全局变量,主界面的类用一个线程定时扫描,如果这个数据不是空,则说明被类刷新了,那么更新 ...

  4. 你真的了解装箱(Boxing)和拆箱(Unboxing)吗?

    所谓装箱就是装箱是将值类型转换为 object 类型或由此值类型实现的任一接口类型的过程.而拆箱就是反过来了.很多人可能都知道这一点,但是是否真的就很了解boxing和unboxing了呢?可以看下下 ...

  5. Gradle学习小结

    build.gradle(依赖配置) // 普通java工程 apply plugin: 'java' // Idea工程 apply plugin: 'idea' // war工程,需要有webap ...

  6. 【Lucene】Apache Lucene全文检索引擎架构之中文分词和高亮显示4

    前面总结的都是使用Lucene的标准分词器,这是针对英文的,但是中文的话就不顶用了,因为中文的语汇与英文是不同的,所以一般我们开发的时候,有中文的话肯定要使用中文分词了,这一篇博文主要介绍一下如何使用 ...

  7. [redis]redis概述

    Redis是一个开源.支持网络.基于内存.可持久化的日志型.key-value键值对数据库.使用ANSI C编写.并提供多种语言的API. 它是远程字典server(remote dictionary ...

  8. Eclipse个最实用的快捷键

    一个Eclipse骨灰级开发人员总结了他觉得最实用但又不太为人所知的快捷键组合.通过这些组合能够更加easy的浏览源码,使得总体的开发效率和质量得到提升.     1. ctrl+shift+r:打开 ...

  9. sublime 插件篇

    添加插件 进入https://packagecontrol.io/installation   找到 或者 直接复制 import urllib.request,os,hashlib; h = '6f ...

  10. angularjs中的$q

    先说说什么是Promise,什么是$q吧.Promise是一种异步处理模式,有很多的实现方式,比如著名的Kris Kwal's Q还有JQuery的Deffered. 什么是Promise 以前了解过 ...