波动数列 神奇的dp
1 3 0 2 -1 1 -2 ...
这个数列中后一项总是比前一项增加2或者减少3。
栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加a或者减少b的整数数列可能有多少种呢?
对于30%的数据,1<=n<=30,0<=s<=30,1<=a,b<=30;
对于50%的数据,1<=n<=50,0<=s<=50,1<=a,b<=50;
对于70%的数据,1<=n<=100,0<=s<=500,1<=a, b<=50;
对于100%的数据,1<=n<=1000,-1,000,000,000<=s<=1,000,000,000,1<=a, b<=1,000,000。
--------------------------------------------------------------------------------------------------------------------------
我算是摸透了,蓝桥杯最后两题如果数据大,肯定不是dfs,多半是DP
这个题是如何变出一个DP的递推公式呢,贼神奇
把a,b归结为一个状态p,第i个数要么是加a,要么是加b
对于n个数而言,a和b的总次数是 从1累加到(n-1)
我们暂且不论x是什么数,我们研究的是a出现的次数
对于第i个数来说 要么是a出现,要么是a不出现b出现,这两种状态
网上的思路大概是这样,dp[i-1][j]表示的是第i个数不取a
我想了很久,为什么dp[i-1][j-i]是表示第i个数取a,其他人对j有两种解释
1. dp(i,j)表示序列的前 i 项中 a 的次数为 j 时的方案种数。
2.dp[i][j],表示前i个元素组成和为j的序列的方案数,这里的和j表示的是所有的a的和.
但是j的范围是
我是这么理解的 i表示前i项,而j是a出现次数的和,不是a一共出现了多少次,而是从1累加到出现的次数。
比如对于前两项而言,a只能出现1次或者2次,那么j的最大值就是1+2 = 3
对于前三项而言,a只能出现1,2,3次,那么j的最大值就是1+2+3 = 6
我之前在这里想了好久好久,抱住萌萌的自己。
dp[0][0] = 1
dp[1][0] = dp[0][0] = 1 || dp[1][1] = dp[0][1]+dp[0][0] = 1
dp[2][0] = dp[1][0] = 1 || dp[2][1] = dp[1][1] =1 || dp[2][2] = dp[1][2] + dp[1][0] = 1 || dp[2][3] = dp[1][3] + dp[1][1] = 1
dp用滚动数组节省空间,最后判断x是不是整数。
#include<iostream>
using namespace std;
#define MOD 100000007
#define MAXN 1100
long long n,s,a,b;
long long all;
long long Bo[2][MAXN*MAXN];//作为滚动数组
int p=0;
//p为滚动数组标识,表示当前操作数组的第几行,(例如当前计算第i行,p指向操作Bo数组第0行,逻辑上i-1行是Bo数组第1行)
void fun_dp()
{
long long i,j;
//动态规划前初始化,只有一个体积为0的物品,可以装入容量为0的背包,容量大于0的背包方案数为0
Bo[p][0]=1;
for(i=1;i<n;i++)//有体积为1到n-1的n-1种物品
{
p=1-p;//p如果是0变换成1,如果是1变换成0
for(j=0;j<=i*(i+1)/2;j++)//背包容量从0到 i*(i-1)/2
{
if(i<j || i==j)
{
Bo[p][j] = (Bo[1-p][j] + Bo[1-p][j-i]) % MOD;
}else{
Bo[p][j] = Bo[1-p][j];
}
}
}
}
int fun_sum()
{
long long count=0,i;
long long temp;
for(i=0;i<=all;i++)
{
temp = s - i*a + (all - i)*b;
if(temp%n == 0)
{
count = (count+Bo[p][i])%MOD;
}
}
return count;
}
int main()
{
long long count;
cin >> n >> s >> a >> b;
all = n*(n-1)/2; //最多可以增加多少个a(背包容量最大值)
fun_dp();//进行动态规划的函数
count = fun_sum();//统计总数
cout << count;
return 0;
}
波动数列 神奇的dp的更多相关文章
- 0-1背包dp|波动数列|2014年蓝桥杯A组10-fishers
标题:波动数列 观察这个数列: 1 3 0 2 -1 1 -2 ... 这个数列中后一项总是比前一项增加2或者减少3. 栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加a ...
- 转 蓝桥杯 历届试题 波动数列 [ dp ]
传送门 历届试题 波动数列 时间限制:1.0s 内存限制:256.0MB 锦囊1 锦囊2 锦囊3 问题描述 观察这个数列: 1 3 0 2 -1 1 -2 ... 这个 ...
- 算法笔记_172:历届试题 波动数列(Java)
目录 1 问题描述 2 解决方案 1 问题描述 问题描述 观察这个数列: 1 3 0 2 -1 1 -2 ... 这个数列中后一项总是比前一项增加2或者减少3. 栋栋对这种数列很好奇,他想知道长度 ...
- 那些神奇的DP建模
(1). 迎接仪式 思路:性质,状态1拆为2,进行匹配 (2). 数字序列 思路:转换DP方程,玄学 (3). 序列分割 思路:性质,斜率优化 (4). 经营与开发 思路:倒序,秦久韶公式 (5). ...
- 蓝桥 PREV-30 历届试题 波动数列 【动态规划】
历届试题 波动数列 时间限制:1.0s 内存限制:256.0MB 问题描述 观察这个数列: 1 3 0 2 -1 1 -2 ... 这个数列中后一项总是比前一项增加2或者减少3. ...
- Luogu P2467 [SDOI2010]地精部落 | 神奇的dp
题目链接 DP 题目大意:给定一个数n,求1~n这n个整数的所有排列中有多少个波动数列,将这个数量%p后输出. 什么是波动数列呢?顾名思义,就是一个大.一个小.一个大.一个小--或者是一个小.一个大. ...
- 蓝桥杯---波动数列(dp)(背包)(待解决)
问题描述 观察这个数列: 1 3 0 2 -1 1 -2 ... 这个数列中后一项总是比前一项增加2或者减少3. 栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加a或者减 ...
- tsinsen A1067. Fibonacci数列整除问题 dp
A1067. Fibonacci数列整除问题 时间限制:1.0s 内存限制:512.0MB 总提交次数:2796 AC次数:496 平均分:51.83 将本题分享到: 查看未格 ...
- [ZJOI2011]细胞——斐波那契数列+矩阵加速+dp
Description bzoj2323 Solution 题目看起来非常复杂. 本质不同的细胞这个条件显然太啰嗦, 是否有些可以挖掘的性质? 1.发现,只要第一次分裂不同,那么互相之间一定是不同的( ...
随机推荐
- Linux内存管理 - buddy系统
本文目的在于分析Linux内存管理机制中的伙伴系统.内核版本为2.6.31.1. 伙伴系统的概念 在系统运行过程中,经常需要分配一组连续的页,而频繁的申请和释放内存页会导致内存中散布着许多不连续的页, ...
- BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 4727 Solved: 2877[Submit][Status][Discuss] Descript ...
- PHP成随机字符串
生成随机字符串 /** * 随机字符串 * @param int $len * @return string */ function randomStr($len = 32) { $chars = & ...
- php-5.6.26源代码 - 扩展模块的加载、注册
// main实现在文件 php-5.6.26\sapi\cgi\cgi_main.c int main(int argc, char *argv[]) { .... cgi_sapi_module- ...
- php-5.6.26源代码 - opcode列表
文件 php-5.6.26/Zend/zend_vm_opcodes.h #ifndef ZEND_VM_OPCODES_H #define ZEND_VM_OPCODES_H BEGIN_EXTER ...
- MySQL 获取物理表的主键字段
参考代码: /** * 获取主键字段 * @param $table * @param $database * @return mixed */ public function get_primary ...
- Linux系统Mini版配置相关
一:修改ip 编辑:vi /etc/sysconfig/network-sc/ifcfg-eth0 配置如下图:
- Linux段式管理与页式管理
内存管理有2种机制:1.段式管理:2.页式管理 在80386CPU中增加了2个寄存器:1.全局性的段描述表寄存器GDTR 2.局部性的段描述表寄存器LDTR 段寄存器的高13位用于在全局或局部描述表项 ...
- Leetcode 606. 根据二叉树创建字符串
题目链接 https://leetcode.com/problems/construct-string-from-binary-tree/description/ 题目描述 你需要采用前序遍历的方式, ...
- 大话CNN经典模型:LeNet
近几年来,卷积神经网络(Convolutional Neural Networks,简称CNN)在图像识别中取得了非常成功的应用,成为深度学习的一大亮点.CNN发展至今,已经有很多变种,其中有 ...