import glob
import os.path
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
import tensorflow.contrib.slim as slim # 加载通过TensorFlow-Slim定义好的inception_v3模型。
import tensorflow.contrib.slim.python.slim.nets.inception_v3 as inception_v3 # 处理好之后的数据文件。
INPUT_DATA = 'F:\\flower_processed_data.npy'
# 保存训练好的模型的路径。
TRAIN_FILE = 'E:\\train_dir\\model'
# 谷歌提供的训练好的模型文件地址。因为GitHub无法保存大于100M的文件,所以
# 在运行时需要先自行从Google下载inception_v3.ckpt文件。
CKPT_FILE = 'C:\\inception_v3.ckpt' # 定义训练中使用的参数。
LEARNING_RATE = 0.0001
STEPS = 300
BATCH = 32
N_CLASSES = 5 # 不需要从谷歌训练好的模型中加载的参数。
CHECKPOINT_EXCLUDE_SCOPES = 'InceptionV3/Logits,InceptionV3/AuxLogits'
# 需要训练的网络层参数明层,在fine-tuning的过程中就是最后的全联接层。
TRAINABLE_SCOPES='InceptionV3/Logits,InceptionV3/AuxLogit' def get_tuned_variables():
exclusions = [scope.strip() for scope in CHECKPOINT_EXCLUDE_SCOPES.split(',')]
variables_to_restore = []
# 枚举inception-v3模型中所有的参数,然后判断是否需要从加载列表中移除。
for var in slim.get_model_variables():
excluded = False
for exclusion in exclusions:
if var.op.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)
return variables_to_restore def get_trainable_variables():
scopes = [scope.strip() for scope in TRAINABLE_SCOPES.split(',')]
variables_to_train = []
# 枚举所有需要训练的参数前缀,并通过这些前缀找到所有需要训练的参数。
for scope in scopes:
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
variables_to_train.extend(variables)
return variables_to_train def main():
# 加载预处理好的数据。
processed_data = np.load(INPUT_DATA)
training_images = processed_data[0]
n_training_example = len(training_images)
training_labels = processed_data[1] validation_images = processed_data[2]
validation_labels = processed_data[3] testing_images = processed_data[4]
testing_labels = processed_data[5]
print("%d training examples, %d validation examples and %d testing examples." % (
n_training_example, len(validation_labels), len(testing_labels)))
# 定义inception-v3的输入,images为输入图片,labels为每一张图片对应的标签。
images = tf.placeholder(tf.float32, [None, 299, 299, 3], name='input_images')
labels = tf.placeholder(tf.int64, [None], name='labels')
# 定义inception-v3模型。因为谷歌给出的只有模型参数取值,所以这里
# 需要在这个代码中定义inception-v3的模型结构。虽然理论上需要区分训练和
# 测试中使用到的模型,也就是说在测试时应该使用is_training=False,但是
# 因为预先训练好的inception-v3模型中使用的batch normalization参数与
# 新的数据会有出入,所以这里直接使用同一个模型来做测试。
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
logits, _ = inception_v3.inception_v3(images, num_classes=N_CLASSES, is_training=True)
trainable_variables = get_trainable_variables()
# 定义损失函数和训练过程。
tf.losses.softmax_cross_entropy(
tf.one_hot(labels, N_CLASSES), logits, weights=1.0)
total_loss = tf.losses.get_total_loss()
train_step = tf.train.RMSPropOptimizer(LEARNING_RATE).minimize(total_loss) # 计算正确率。
with tf.name_scope('evaluation'):
correct_prediction = tf.equal(tf.argmax(logits, 1), labels)
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 定义加载Google训练好的Inception-v3模型的Saver。
load_fn = slim.assign_from_checkpoint_fn(
CKPT_FILE,
get_tuned_variables(),
ignore_missing_vars=True)
# 定义保存新模型的Saver。
saver = tf.train.Saver() with tf.Session() as sess:
# 初始化没有加载进来的变量。
init = tf.global_variables_initializer()
sess.run(init)
# 加载谷歌已经训练好的模型。
print('Loading tuned variables from %s' % CKPT_FILE)
load_fn(sess)
start = 0
end = BATCH
for i in range(STEPS):
_, loss = sess.run([train_step, total_loss], feed_dict={
images: training_images[start:end],
labels: training_labels[start:end]})
if i % 30 == 0 or i + 1 == STEPS:
saver.save(sess, TRAIN_FILE, global_step=i)
validation_accuracy = sess.run(evaluation_step, feed_dict={
images: validation_images, labels: validation_labels})
print('Step %d: Training loss is %.1f Validation accuracy = %.1f%%' % (i, loss, validation_accuracy * 100.0))
start = end
if start == n_training_example:
start = 0
end = start + BATCH
if end > n_training_example:
end = n_training_example
# 在最后的测试数据上测试正确率。
test_accuracy = sess.run(evaluation_step, feed_dict={
images: testing_images, labels: testing_labels})
print('Final test accuracy = %.1f%%' % (test_accuracy * 100)) if __name__ == '__main__':
main()

吴裕雄 python 神经网络——TensorFlow 花瓣识别2的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)

    # -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...

  2. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  3. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  4. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(1)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  5. 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别

    import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...

  6. 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...

  7. 吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = in ...

  8. 吴裕雄 python 神经网络——TensorFlow 卷积神经网络手写数字图片识别

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...

  9. 吴裕雄 python 神经网络——TensorFlow 卷积神经网络水果图片识别

    #-*- coding:utf- -*- import time import keras import skimage import numpy as np import tensorflow as ...

随机推荐

  1. 每天进步一点点------Allegro PCB

    Allegro PCB 1.如何在allegro中取消花焊盘(十字焊盘) set up->design parameter ->shape->edit global dynamic ...

  2. 做新时代的奋斗者!(好吧,我还没弄出python的编译环境)

    Pictures: 今日分来的补记来嘞: Game 1:Guess the number. Python包含许多内建的函数,有些函数存在于称为模块的单独的程序中,可以使用import语句把它们的模块导 ...

  3. Oracle创表操作记录

    Oracle表操作 --主键,复合主键 create table example (id number primary key, name varchar2(20)); create table ex ...

  4. java.sql.SQLException: Field 'login_date' doesn't have a default value解决方法

    在做web项目的insert插入操作的时候, 由于对于一个字段没有插入数据, xml文件写法如下: <insert id="savePremissUser" > ins ...

  5. sqlserver 数据保留固定位小数,四舍五入后保存

    在实际业务中遇到金额保留四舍五入后,保留两位小数的需求.但是原来的数据是保留的6位小数,所以需要转化一下.具体实现过程如下: EG:SELECT CAST ( ROUND(1965.12540,2) ...

  6. Mysql SQL CAST()函数

    (1).CAST()函数的参数是一个表达式,它包括用AS关键字分隔的源值和目标数据类型.以下例子用于将文本字符串'12'转换为整型: SELECT CAST('12' AS int) (2).返回值是 ...

  7. webpack4.x基本配置

    在学习vue的时候,需要进行打包操作,视频看的是webpack3的踩了好多坑,所以在记录一下,方便后续复习.有错误请指出. 新建项目文件 在项目文件下 执行npm init -y,进行初始化,生成pa ...

  8. openfeign 使用方法和执行流程

    1.用法 1.1引入依赖 <!-- feign client --> <dependency> <groupId>org.springframework.cloud ...

  9. Chrome下ifame父窗口调用子窗口的问题

    function changeMenu(menu_id){ frames[0].changeMenu(menu_id); } https://blog.csdn.net/caohaicheng/art ...

  10. docker 报错 docker: Error response from daemon: driver failed....iptables failed:

    现象: [root@localhost test]# docker run --name postgres1 -e POSTGRES_PASSWORD=password -p : -d postgre ...