深度增强学习--Actor Critic
Actor Critic value-based和policy-based的结合

import sys
import gym
import pylab
import numpy as np
from keras.layers import Dense
from keras.models import Sequential
from keras.optimizers import Adam EPISODES = 1000 # A2C(Advantage Actor-Critic) agent for the Cartpole
# actor-critic算法结合了value-based和policy-based方法
class A2CAgent:
def __init__(self, state_size, action_size):
# if you want to see Cartpole learning, then change to True
self.render = True
self.load_model = False
# get size of state and action
self.state_size = state_size
self.action_size = action_size
self.value_size = 1 # These are hyper parameters for the Policy Gradient
self.discount_factor = 0.99
self.actor_lr = 0.001
self.critic_lr = 0.005 # create model for policy network
self.actor = self.build_actor()
self.critic = self.build_critic() if self.load_model:
self.actor.load_weights("./save_model/cartpole_actor.h5")
self.critic.load_weights("./save_model/cartpole_critic.h5") # approximate policy and value using Neural Network
# actor: state is input and probability of each action is output of model
def build_actor(self):#actor网络:state-->action
actor = Sequential()
actor.add(Dense(24, input_dim=self.state_size, activation='relu',
kernel_initializer='he_uniform'))
actor.add(Dense(self.action_size, activation='softmax',
kernel_initializer='he_uniform'))
actor.summary()
# See note regarding crossentropy in cartpole_reinforce.py
actor.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=self.actor_lr))
return actor # critic: state is input and value of state is output of model
def build_critic(self):#critic网络:state-->value,Q值
critic = Sequential()
critic.add(Dense(24, input_dim=self.state_size, activation='relu',
kernel_initializer='he_uniform'))
critic.add(Dense(self.value_size, activation='linear',
kernel_initializer='he_uniform'))
critic.summary()
critic.compile(loss="mse", optimizer=Adam(lr=self.critic_lr))
return critic # using the output of policy network, pick action stochastically
def get_action(self, state):
policy = self.actor.predict(state, batch_size=1).flatten()#根据actor网络预测下一步动作
return np.random.choice(self.action_size, 1, p=policy)[0] # update policy network every episode
def train_model(self, state, action, reward, next_state, done):
target = np.zeros((1, self.value_size))#(1,1)
advantages = np.zeros((1, self.action_size))#(1, 2) value = self.critic.predict(state)[0]#critic网络预测的当前q值
next_value = self.critic.predict(next_state)[0]#critic网络预测的下一个q值 '''
理解下面部分
'''
if done:
advantages[0][action] = reward - value
target[0][0] = reward
else:
advantages[0][action] = reward + self.discount_factor * (next_value) - value#acotr网络
target[0][0] = reward + self.discount_factor * next_value#critic网络 self.actor.fit(state, advantages, epochs=1, verbose=0)
self.critic.fit(state, target, epochs=1, verbose=0) if __name__ == "__main__":
# In case of CartPole-v1, maximum length of episode is 500
env = gym.make('CartPole-v1')
# get size of state and action from environment
state_size = env.observation_space.shape[0]
action_size = env.action_space.n # make A2C agent
agent = A2CAgent(state_size, action_size)
scores, episodes = [], [] for e in range(EPISODES):
done = False
score = 0
state = env.reset()
state = np.reshape(state, [1, state_size]) while not done:
if agent.render:
env.render() action = agent.get_action(state)
next_state, reward, done, info = env.step(action)
next_state = np.reshape(next_state, [1, state_size])
# if an action make the episode end, then gives penalty of -100
reward = reward if not done or score == 499 else -100 agent.train_model(state, action, reward, next_state, done)#每执行一次action训练一次 score += reward
state = next_state if done:
# every episode, plot the play time
score = score if score == 500.0 else score + 100
scores.append(score)
episodes.append(e)
pylab.plot(episodes, scores, 'b')
pylab.savefig("./save_graph/cartpole_a2c.png")
print("episode:", e, " score:", score) # if the mean of scores of last 10 episode is bigger than 490
# stop training
if np.mean(scores[-min(10, len(scores)):]) > 490:
sys.exit() # save the model
if e % 50 == 0:
agent.actor.save_weights("./save_model/cartpole_actor.h5")
agent.critic.save_weights("./save_model/cartpole_critic.h5")
深度增强学习--Actor Critic的更多相关文章
- 深度增强学习--DDPG
DDPG DDPG介绍2 ddpg输出的不是行为的概率, 而是具体的行为, 用于连续动作 (continuous action) 的预测 公式推导 推导 代码实现的gym的pendulum游戏,这个游 ...
- 深度增强学习--A3C
A3C 它会创建多个并行的环境, 让多个拥有副结构的 agent 同时在这些并行环境上更新主结构中的参数. 并行中的 agent 们互不干扰, 而主结构的参数更新受到副结构提交更新的不连续性干扰, 所 ...
- 深度增强学习--DPPO
PPO DPPO介绍 PPO实现 代码DPPO
- 深度增强学习--DQN的变形
DQN的变形 double DQN prioritised replay dueling DQN
- 深度增强学习--Policy Gradient
前面都是value based的方法,现在看一种直接预测动作的方法 Policy Based Policy Gradient 一个介绍 karpathy的博客 一个推导 下面的例子实现的REINFOR ...
- 深度增强学习--Deep Q Network
从这里开始换个游戏演示,cartpole游戏 Deep Q Network 实例代码 import sys import gym import pylab import random import n ...
- 常用增强学习实验环境 II (ViZDoom, Roboschool, TensorFlow Agents, ELF, Coach等) (转载)
原文链接:http://blog.csdn.net/jinzhuojun/article/details/78508203 前段时间Nature上发表的升级版Alpha Go - AlphaGo Ze ...
- 马里奥AI实现方式探索 ——神经网络+增强学习
[TOC] 马里奥AI实现方式探索 --神经网络+增强学习 儿时我们都曾有过一个经典游戏的体验,就是马里奥(顶蘑菇^v^),这次里约奥运会闭幕式,日本作为2020年东京奥运会的东道主,安倍最后也已经典 ...
- 增强学习 | AlphaGo背后的秘密
"敢于尝试,才有突破" 2017年5月27日,当今世界排名第一的中国棋手柯洁与AlphaGo 2.0的三局对战落败.该事件标志着最新的人工智能技术在围棋竞技领域超越了人类智能,借此 ...
随机推荐
- Linux利用list_head结构实现双向链表
原文地址:http://www.cnblogs.com/bastard/archive/2012/10/19/2731107.html 通常实现双向链表的数据结构: struct list_node1 ...
- 虚拟机vmware10.0.0里设置Suse Linux Enterprise 11系统静态IP上网
http://blog.csdn.net/usbdrivers/article/details/50035615 首次在虚拟机里安装Suse Linux Enterprise 11,采用NET方式能够 ...
- RedHat修改系统时区
http://blog.itpub.net/27099995/viewspace-1370723/ 今天又被开发的说服务器时间异常,时差很大.我就纳闷了,上个星期都调整过的.去查看了一下. [root ...
- javascript中a标签把href属性设置为“javascript:void(0)”还是会打开空白页面的问题
在项目中有个位置的点击a标签这里要加一个权限判断,但是之前使用的是js动态添加a标签,href的属性值是一个url,但是我要做权限判断之后,我的url就不能设置在href属性中了,这样的话我可以在a标 ...
- ETL(Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程)
ETL(Extract-Transform-Load的缩写,即数据抽取.转换.装载的过程)
- getResourceAsStream用法详解
//使用绝对路径,否则无法读取config.properties //InputStream inStream=new FileInputStream("F:\\android\\test\ ...
- hdu 1147(线段相交)
Pick-up sticks Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- opencv inrange 和 mix
opencv inrange: http://blog.csdn.net/xiaoyufei117122/article/details/53572904 http://blog.csdn.net/w ...
- 使用maven进行Javadoc下载
project -> maven -> Download Sources and Download JavaDocs
- [centos6.5] yum makecache 连接错误的解决办法
http://mirrors.163.com/.help/centos.html 访问这个就懂了