题目链接: hszxoj 货车运输

题目描述与思路

  • 简化题目:

    求 \(x\)到 \(y\) 两点间路径的边权最小值的最大值
  • 与之前的最短路最大的不同是这道题是多源最短路,那么 \(spfa\) 就废了,\(Floyd\) 定会 \(TLE\) 所以就需要用新的算法。
  • 用 \(lca\) 一定是在树上的,但明显这玩意他既有环又有森林,直接用就会 \(RE\)
  • 所以我们需要用到 \(kru\) 重构树

    首先展示 \(kru\) 代码
void kru()
{
stable_sort(e+1,e+1+m,cmp);
cnt=n;
for(int i=1;i<=m;i++)
{
int a=find(e[i].x),b=find(e[i].y);
if(a==b) continue;
f[a]=f[b]=++cnt;
g[a].push_back(cnt),g[cnt].push_back(a),
g[b].push_back(cnt),g[cnt].push_back(b);
w[cnt]=e[i].w;
if(++tot==n-1) break;
}
root=n+tot;
}
  • 首先排序一下,注意这道题是 \(最大生成树\) ,所以从大到小排序,这样求出来才是最小值的最大值,不然就是最大值的最小值了
  • 有三个重要点
    • \(1.\) 和正常的最小生成树不同,我们最后只需要输出两点的最近公共祖先的点权,但我们实则求的是对应的边权,就需要将边权转换为点权。不妨将相连的两点 \(x\),\(y\) 中间插入一个点,让这个点的点权为 \(x,y\) 的边权,并使这个点成为 \(x\) 和 \(y\) 的祖先

      • 为什么让他成为这两个点的祖先也是显而易见的,我们最后输出最近公共祖先的权值,只有类似这个新点的权值,他才不是 \(0\),看完全部代码后会理解得更清晰



        \(变化后是这样,5是新的点,5的权值为1\)

    • \(2.\) 我们需要搞出来树根 \(root\) 代码里最后有一行 \(root=n+tot\) 为什么这么做呢?他重构树之后显然是有 \(森林\) 的,但他最后一个点不可能是森林(不然他无父无母的都遍历不到这个点),相当重要的,否则只有15分,后面 \(dfs\) 时有用
    • \(3.\) 某个脑残问题,看到那个 \(break\) 没有,改成 \(return\) ,\(root\) 就没了 \(\large{qwq}\)
  • 然后快乐的打完 \(lca\) 就完事了,最后输出两点最近公共祖先的权值即可,题中有一个若两点无法到达,输出 \(-1\) ,判断一下他们两个是不是在一个并查集里,如果不是自然就是不通
  • 并查集如果用我这种方法别忘了 \(初始化\),初始化时要搞到 \(n+m\) ,因为我们是要建新的点的不然会炸内存

代码呈上

#include<bits/stdc++.h>
#define endl '\n'
#define int long long
using namespace std;
const int N=5e5+1;
template<typename Tp> inline void read(Tp&x)
{
x=0;register bool z=1;
register char c=getchar();
for(;c<'0'||c>'9';c=getchar()) if(c=='-') z=0;
for(;'0'<=c&&c<='9';c=getchar()) x=(x<<1)+(x<<3)+(c^48);
x=(z?x:~x+1);
}
int n,m,q,cnt,root,tot;
int w[N],f[N],fa[N],dep[N],sz[N],son[N],top[N];
vector<int>g[N];
struct aa{int x,y,w;}e[N];
bool cmp(aa s1,aa s2){return s1.w>s2.w;}
int find(int x)
{
if(f[x]!=x) f[x]=find(f[x]);
return f[x];
}
void kru()
{
stable_sort(e+1,e+1+m,cmp);
cnt=n;
for(int i=1;i<=m;i++)
{
int a=find(e[i].x),b=find(e[i].y);
if(a==b) continue;
f[a]=f[b]=++cnt;
g[a].push_back(cnt),g[cnt].push_back(a),
g[b].push_back(cnt),g[cnt].push_back(b);
w[cnt]=e[i].w;
if(++tot==n-1) break;
}
root=n+tot;
}
void dfs1(int x,int t)
{
fa[x]=t,dep[x]=dep[t]+1,sz[x]=1;
for(int y:g[x])
if(y!=t)
{
dfs1(y,x);
sz[x]+=sz[y];
if(sz[son[x]]<sz[y]) son[x]=y;
}
}
void dfs2(int x,int t)
{
top[x]=t;
if(!son[x]) return ;
dfs2(son[x],t);
for(int y:g[x])
if(y!=son[x]&&y!=fa[x])
dfs2(y,y);
}
int lca(int x,int y)
{
for(;top[x]!=top[y];x=fa[top[x]])
if(dep[top[x]]<dep[top[y]]) swap(x,y);
return dep[x]<dep[y]?x:y;
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int x,y;
read(n),read(m);
for(int i=1;i<=n+m;i++) f[i]=i;
for(int i=1;i<=m;i++)
read(e[i].x),read(e[i].y),read(e[i].w);
kru(),dfs1(root,0),dfs2(root,root);
read(q);
while(q--)
read(x),read(y),
cout<<((find(x)!=find(y))?-1:w[lca(x,y)])<<endl;
}

并查集还可以这么打(虽然大多数人都是这么打的)

int find(int x)
{
return (!f[x])?x:f[x]=find(f[x]);
}

这样就不需要初始化了

hszxoj 货车运输 [lca]的更多相关文章

  1. NOIP2013货车运输[lca&&kruskal]

    题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多 ...

  2. NOIP2013 货车运输 LCA倍增+最大生成树

    #include <cstdio> #include <iostream> #include <ctime> #include <vector> #in ...

  3. 洛谷 P1967 货车运输 LCA + 最小生成树

    两点之间边权最大值的最小值一定在图的最小生成树中取到. 求出最小生成树,进行倍增即可. Code: #include<cstdio> #include<algorithm> u ...

  4. NOIP2013 货车运输 (最大生成树+树上倍增LCA)

    死磕一道题,中间发现倍增还是掌握的不熟 ,而且深刻理解:SB错误毁一生,憋了近2个小时才调对,不过还好一遍AC省了更多的事,不然我一定会疯掉的... 3287 货车运输 2013年NOIP全国联赛提高 ...

  5. Codevs 3287 货车运输 2013年NOIP全国联赛提高组(带权LCA+并查集+最大生成树)

    3287 货车运输 2013年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 传送门 题目描述 Description A 国有 n 座 ...

  6. 「NOIP2013」「LuoguP1967」货车运输(最大生成树 倍增 LCA

    题目描述 AA国有nn座城市,编号从 11到nn,城市之间有 mm 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最 ...

  7. 洛谷P3379lca,HDU2586,洛谷P1967货车运输,倍增lca,树上倍增

    倍增lca板子洛谷P3379 #include<cstdio> struct E { int to,next; }e[]; ],anc[][],log2n,deep[],n,m,s,ne; ...

  8. codevs3287货车运输(最小生成树+LCA)

    3287 货车运输 2013年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description A 国有 ...

  9. NOIP 2013 货车运输【Kruskal + 树链剖分 + 线段树 】【倍增】

    NOIP 2013 货车运输[树链剖分] 树链剖分 题目描述 Description A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在 ...

  10. C++之路进阶——codevs3287(货车运输)

    3287 货车运输 2013年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description A 国有 n ...

随机推荐

  1. Iphone常用工具

    iFunBox itools 百度助手 崩溃日志的路径 /var/mobile/Library/Logs/CrashReporter

  2. Kruskal重构树 学习笔记

    Kruskal 重构树 最大生成树将部分内容倒置即可 回顾:Kruskal 基本信息 求解最小生成树 时间复杂度:\(O(m \log m)\) 更适合稀疏图 算法思想 按照边权从小到大排序 依次枚举 ...

  3. WebAssembly实践指南——C++和Rust通过wasmtime实现相互调用实例

    C++和Rust通过wasmtime实现相互调用实例 1 wasmtime介绍 wasmtime是一个可以运行WebAssembly代码的运行时环境. WebAssembly是一种可移植的二进制指令集 ...

  4. Appilot发布:打造面向DevOps场景的开源AI助手

    今日,数澈软件Seal (以下简称"Seal")宣布推出面向 DevOps 场景的 AI 助手 Appilot,这款产品将充分利用 AI 大语言模型的能力为用户提供变革性的部署和应 ...

  5. 2023-09-23:用go语言,假设每一次获得随机数的时候,这个数字大于100的概率是P。 尝试N次,其中大于100的次数在A次~B次之间的概率是多少? 0 < P < 1, P是double类型,

    2023-09-23:用go语言,假设每一次获得随机数的时候,这个数字大于100的概率是P. 尝试N次,其中大于100的次数在A次~B次之间的概率是多少? 0 < P < 1, P是dou ...

  6. Kubeflow基础知识

    kubeflow 基础知识 kubeflow 简介 kubeflow是谷歌开源的MLOps开源平台,其中包含的不同组件代表了机器学习生命周期的不同阶段. 下图是kubeflow组织ML工作流程: ku ...

  7. 判断两个数a,b,输出较大数的平方值。所谓平方值就是两个相同的数相乘的积。

    平方值   描述 判断两个数a,b,输出较大数的平方值.所谓平方值就是两个相同的数相乘的积. 输入 两个数a和b 输出 输出较大数的平方值. 输入样例 1 1 2 输出样例 1 4 a,c = map ...

  8. ORB-SLAM3测试

    (一)环境搭建教程 1.Ubuntu18.04从零开始搭建orb slam3及数据集测试:https://blog.csdn.net/Skether/article/details/131320852 ...

  9. Gitlab Server

    Gitlab 基本概述 1.什么是Gitlab ? Gitlab是一个开源分布式的版本控制系统. Ruby语言开发完成. Gitlab主要实现的功能.管理项目源代码.对源代码进行版本控制.以及代码复用 ...

  10. P9754 [CSP-S 2023] 结构体 题解

    大模拟的话,大家应该都会,主要就是容易写挂. 操作 1 先理解什么叫做对齐规则.这点我们以样例 2 进行解释: struct a { int aa; short ab; long ac; byte a ...