#斯坦纳树,状压dp#洛谷 3264 [JLOI2015]管道连接
分析
如果对于每一个频道单独跑斯坦纳树可能会存在两种频道共用一条道路而重复统计的情况,
考虑状压dp,设\(f[s]\)表示选择频道二进制状态为\(s\)的最小贡献,那么对于每个状态跑斯坦纳树然后状压求最小值即可
代码
#include <cstdio>
#include <cctype>
#include <queue>
#include <vector>
#include <cstring>
#define rr register
using namespace std;
const int N=1101; vector<int>K[11];
struct node{int y,w,next;}e[N*6]; queue<int>q;
int dp[N][N],f[N],as[N],two[11],n,m,kk,k,v[N],et=1,a[11],b[11];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void Spfa(int z){
while (!q.empty()){
rr int x=q.front(); q.pop();
for (rr int i=as[x];i;i=e[i].next)
if (dp[z][e[i].y]>dp[z][x]+e[i].w){
dp[z][e[i].y]=dp[z][x]+e[i].w;
if (!v[e[i].y]) v[e[i].y]=1,q.push(e[i].y);
}
v[x]=0;
}
}
inline void Steiner(int o){
for (rr int S=1;S<two[o];++S){
for (rr int i=1;i<=n;++i){
for (rr int j=S&(S-1);j;j=(j-1)&S)
if (dp[S][i]>dp[j][i]+dp[S^j][i])
dp[S][i]=dp[j][i]+dp[S^j][i];
if (dp[S][i]<0x3f3f3f3f) q.push(i),v[i]=1;
}
Spfa(S);
}
}
signed main(){
n=iut(),m=iut(),kk=iut(),two[0]=1;
for (rr int i=1;i<=m;++i){
rr int x=iut(),y=iut(),w=iut();
e[++et]=(node){y,w,as[x]},as[x]=et;
e[++et]=(node){x,w,as[y]},as[y]=et;
}
memset(v,-1,sizeof(v));
for (rr int i=1;i<=kk;++i){
a[i]=iut(),b[i]=iut();
if (v[a[i]]==-1) v[a[i]]=k++;
K[v[a[i]]].push_back(b[i]);
}
for (rr int i=1;i<=kk;++i) two[i]=two[i-1]<<1;
f[0]=0,memset(v,0,sizeof(v));
for (rr int S=1;S<two[k];++S){
memset(dp,0x3f,sizeof(dp));
rr int now,len,o=0;
for (rr int j=0;j<k;++j)
if ((S>>j)&1){
len=K[j].size(),now=K[j][0];
for (rr int i=0;i<len;++i)
dp[two[o++]][K[j][i]]=0;
}
Steiner(o);
f[S]=dp[two[o]-1][now];
}
for (rr int S=1;S<two[k];++S)
for (rr int j=S&(S-1);j;j=(j-1)&S)
if (f[S]>f[j]+f[S^j]) f[S]=f[j]+f[S^j];
return !printf("%d",f[two[k]-1]);
}
#斯坦纳树,状压dp#洛谷 3264 [JLOI2015]管道连接的更多相关文章
- 【bzoj4006】[JLOI2015]管道连接 斯坦纳树+状压dp
题目描述 给出一张 $n$ 个点 $m$ 条边的无向图和 $p$ 个特殊点,每个特殊点有一个颜色.要求选出若干条边,使得颜色相同的特殊点在同一个连通块内.输出最小边权和. 输入 第一行包含三个整数 n ...
- bzoj 4006 [JLOI2015]管道连接(斯坦纳树+状压DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4006 [题意] 给定n点m边的图,连接边(u,v)需要花费w,问满足使k个点中同颜色的 ...
- bzoj1402 Ticket to Ride 斯坦纳树 + 状压dp
给定\(n\)个点,\(m\)条边的带权无向图 选出一些边,使得\(4\)对点之间可达,询问权值最小为多少 \(n \leqslant 30, m \leqslant 1000\) 首先看数据范围,\ ...
- bzoj 4006 管道连接 —— 斯坦纳树+状压DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4006 用斯坦纳树求出所有关键点的各种连通情况的代价,把这个作为状压(压的是集合选择情况)的初 ...
- 绿色计算大赛决赛 第二阶段 消息传递(斯坦纳树 状压dp+spfa)
传送门 Description 作为公司老板的你手下有N个员工,其中有M个特殊员工.现在,你有一个消息需要传递给你的特殊员工.因为你的公司业务非常紧张,所以你和员工之间以及员工之间传递消息会造成损失. ...
- BZOJ4006: [JLOI2015]管道连接(斯坦纳树,状压DP)
Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1171 Solved: 639[Submit][Status][Discuss] Descripti ...
- BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)
Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 2030 Solved: 986[Submit][Status][ ...
- 洛谷P3264 [JLOI2015]管道连接 (斯坦纳树)
题目链接 题目大意:有一张无向图,每条边有一定的花费,给出一些点集,让你从中选出一些边,用最小的花费将每个点集内的点相互连通,可以使用点集之外的点(如果需要的话). 算是斯坦纳树的入门题吧. 什么是斯 ...
- 洛谷P3264 [JLOI2015]管道连接(斯坦纳树)
传送门 感觉对斯坦纳树还是有很多疑惑啊…… 等到时候noip没有爆零的话再回来填坑好了 //minamoto #include<iostream> #include<cstdio&g ...
- hdu4085 Peach Blossom Spring 斯坦纳树,状态dp
(1)集合中元素表示(1<<i), i从0开始 (2)注意dp[i][ss] = min(dp[i][ss], dp[i][rr | s[i]] + dp[i][(ss ^ rr) | s ...
随机推荐
- mac更新系统后,提示xcrun的错误问题
pycharm运行代码终端报错: xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools), ...
- 尝试通过uniapp仿微信页面
最近一直想弄一个app,然后刚好看到Uniapp这个技术,然后最近就用几个晚上琢磨了下: 先看下成果: 1.通讯页面,这个是通过插件uni-indexed-list 索引列表 进行改造过后:改造过程还 ...
- 狂神说Git学习笔记整理
Git 版本控制 在开发过程中,项目会进行版本迭代,新版本会取代旧版本,但是我们不希望直接删除旧版本,所以就需要一个版本管理器来管理新旧版本,不然就是手动控制... 多人开发必须使用版本控制!!! ...
- 02、NATS单节点部署
接下来,我们一起看看如何部署一个单节点的 nats 服务器,这样后续学习 nats 的功能和特性的时候,会更加的清晰,那我们一起看看如何部署单节点的nats服务,后面在学习如何部署集群版的 nats. ...
- 用Docker发布Study.BlazorOne.Blazor到公网测试服务器
# 1.准备公网上的测试数据库. 之前我们在Visual Studio里面调试的时候,使用的都是localhost的数据库.现在需要在公网上准备一个SQL Server.然后执行下面的步骤 1)把St ...
- C笔记(2014-12备份)
Video1: 1-编译器对待全局变量和局部变量的差别.全局变量分配空间是在数据区,局部变量分配在代码区. (比如局部变量 int lo_var = 2;后面的 = 2;是赋值语句,被编译器转化成机器 ...
- Python实现ARP攻击
目录 概述 ARP协议 IP转MAC 结构 ARP扫描 开始欺骗 中间人 其他 ARP老化 防御 windows linux 概述 高中的时候,学校有一个商店,会放开WIFI给偷偷带手机去学校的我们使 ...
- GaussDB(DWS)运维利刃:TopSQL工具解析
本文分享自华为云社区<GaussDB(DWS)运维利刃:TopSQL工具解析>,作者:胡辣汤. 在生产环境中,难免会面临查询语句出现异常中断.阻塞时间长等突发问题,如果没能及时记录信息,事 ...
- [.Net]使用Soa库+Abp搭建微服务项目框架(四):动态代理和RPC
上一章我们完成了小项目的面向服务体系改造,你或许一直在思考一个问题.为什么要将业务独立成微服务? 微服务原理 以一个健康医疗系统为例, 这个系统包含了用户模块,问卷的发放与填写,图表显示,报表生成与 ...
- [VueJsDev] 目录列表
[VueJsDev] 目录列表 云服务器域名就一年,gitee上有不给发布,没办法 https://www.vuejsdev.com/ 还是迁移到博客园吧. 文章大部分是2022年9月份左右写的. 已 ...