Acwing P284 金字塔 题解
Analysis
一棵树的每颗子树都对应着这棵树 DFS 序的一个区间。本题的序列虽然不是 DFS 序列,但也有该性质。本题中,我们以区间长度作为阶段, F[ l , r ] 表示序列 s[ l ~ r ]中子树的个数。
如果我们从 l 到 r 在每一个点划分一个 k ,那么时间复杂度会很高。一个比较好的想法是,把子串s[ l ~ r ]分成两部分,每部分可由若干子树构成。为了计数重而不漏,我们只考虑子串的第一颗子树是由哪些序列构成的,即令子串s[ l+1 ~ k-1 ] 构成第一棵子树,s[ k~r ]构成剩余部分。
为什么这样不会重复呢?因为我们 k 不断向后移动,序列不断加长,也就是说第一颗子树规模在从小变大,当然不会重复;至于剩下部分构成的子树,同理,由于规模不断减小,不可能重复。
为什么还要加上一个F[ l + 1 , r - 1] 呢?因为我们虽然枚举了第一颗子树,但是却忽略了该树只有一颗子树的情况,所以需要再加上这种情况,即F[ l + 1 , r - 1 ]。
对于方案计数类的动态规划问题,通常一个状态的各个决策之间满足“加法原理”,而每个决策划分的几个子状态之间满足“乘法原理”。在设计状态转移方程的决策方式与划分方法时,一个状态的所有决策之间必须具有互斥性,才能保证不会出现重复问题。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#define int long long
#define maxn 300+10
#define mod 1000000000
using namespace std;
inline int read()
{
int x=;
bool f=;
char c=getchar();
for(; !isdigit(c); c=getchar()) if(c=='-') f=;
for(; isdigit(c); c=getchar()) x=(x<<)+(x<<)+c-'';
if(f) return x;
return -x;
}
inline void write(int x)
{
if(x<){putchar('-');x=-x;}
if(x>)write(x/);
putchar(x%+'');
}
int len;
int dp[maxn][maxn];
char s[maxn];
inline int DP(int l,int r)
{
if(l>r) return ;
if(s[l]!=s[r]) return ;
if(l==r) return ;
if(dp[l][r]!=-) return dp[l][r];
dp[l][r]=;
for(int k=l+;k<=r-;k++)
{
dp[l][r]=dp[l][r]+(DP(l+,k)*DP(k+,r))%mod;
dp[l][r]%=mod;
}
return dp[l][r];
}
signed main()
{
// freopen("pyramid.in","r",stdin);
// freopen("pyramid.out","w",stdout);
memset(dp,-,sizeof(dp));
scanf("%s",s+);
len=strlen(s+);
int ans=DP(,len);
ans%=mod;
write(ans);
return ;
}
请各位大佬斧正(反正我不认识斧正是什么意思)
Acwing P284 金字塔 题解的更多相关文章
- Acwing P283 多边形 题解
Analysis 总体来说是一个区间DP 此题首先是一个环,要你进行删边操作,剩下的在经过运算得到一个最大值 注意事项: 1.删去一条边,剩下的构成一条线,相当于求此的最大值,经典区间DP该有的样子: ...
- Acwing P277 饼干 题解
每日一题 day20 打卡 Analysis 线型动态规划 读入每个人的贪婪度之后,对其按照从大到小的顺序排序,定义状态f[i][j]为前i个人(排序后)分j个饼干的答案,那么答案为f[n][m],考 ...
- AcWing P379 捉迷藏 题解
Analysis 这道题因为我们要给能到达的两个点都连上,又由于n<=200,所以我们可以用n³的传递闭包来建边,再用匈牙利算法来求二分图最大点独立集. #include<iostream ...
- AcWing 走廊泼水节 题解
这道题大致题意就是让一棵树任意两点有连边(也就是完全图),但是补完后最小生成树是一开始的那棵树,问最小加的边权之和是多少. 了解题意后,我们可以想到用Kruskal(废话),当每两个集合合并的时候,除 ...
- csp-s 考前刷题记录
洛谷 P2615 神奇的幻方 洛谷 P2678 跳石头 洛谷 P1226 [模板]快速幂||取余运算 洛谷 P2661 信息传递 LOJ P10147 石子合并 LOJ P10148 能量项链 LOJ ...
- AcWing 785.快速排序
AcWing 785.快速排序题解 题目描述 给定你一个长度为n的整数数列. 请你使用快速排序对这个数列按照从小到大进行排序. 并将排好序的数列按顺序输出. 输入格式 输入共两行,第一行包含整数 n. ...
- 【题解】AcWing 110. 防晒(普及题)
[题解]AcWing 110. 防晒(普及题) AcWing 110. 防晒 你没有用过的全新OJ 嘿嘿水水题. 题目就是一维坐标轴上给定多个线段,给定多个点,点在线段上造成贡献,点可以重复,问最大贡 ...
- Acwing P288 休息时间 题解
Analysis 首先假设一天的第N小时与后一天的第一个小时不相连, 这种情况下DP转移比较好想 dp[i][j][0/1]dp[i][j][0/1]表示 考虑一天的前i个小时,已经休息了j小时,且第 ...
- Acwing P274 移动服务 题解
每日一题 day21 打卡 Analysis DP的状态为已经完成的请求数量,通过指派一位服务员可以把”完成i - 1个请求的状态”转移到”完成i个请求的状态”那么我们可以知道转移从dp[i - 1] ...
随机推荐
- python基础 — 致初学者的天梯
Python简介 Python是一种计算机程序设计语言.是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新 功能的添加,越来越多被用于独立的.大型项目 ...
- 数据结构与算法(Python)
数据结构与算法(Python) Why? 我们举一个可能不太恰当的例子: 如果将最终写好运行的程序比作战场,我们码农便是指挥作战的将军,而我们所写的代码便是士兵和武器. 那么数据结构和算法是什么?答曰 ...
- as3鱼眼放大镜
package { //hi.baidu.com/inuko //bitmapdata fisheye magnifier //原创代码,如有雷同,纯属巧合 /* 本例是使用近似算法,只是最简单的鱼眼 ...
- Xshell连接虚拟机文档教程
1打开VirtualBox 2 找到导入的虚拟机 3右键虚拟机 启动 4 等待加载 5 加载的时候,打开xshell 6 7 填写框住的内容 名称: 自己取 主机: 127.0.0.1 固定内容 端 ...
- centos7.5 离线安装ntp服务
安装 #检查rpm包 rpm -qa | grep ntp #从https://pkgs.org/download/ntp 下载rpm包 ntp-4.2.6p5-28.el7.centos.x86_6 ...
- 网页包抓取工具Fiddler工具简单设置
当下载好fiddler软件后首先通过以下简单设置,或者有时候fiddler抓取不了浏览器资源了.可以通过以下设置. 设置完成后重启软件.打开网络看看有没有抓取到包.
- python调用jenkinsAPI构建jenkins,并传递参数
安装jenkins 安装jenkins很简单,可以用多种方式安装,这里知道的有: 在官网下载rpm包,手动安装,最费事 centos系统通过yum安装,ubuntu通过apt-get安装(不推荐,因为 ...
- pythdon day13:网络编程socket
目录 day 13 learning python 49. 网络基础 49.1 IP地址 49.2 协议 50. socket编程(套接字编程) 50.1 socket编程简介 50.2 创建sock ...
- Part_five:Redis哨兵高可用
redis哨兵高可用 1.redis-sentinel Redis-Sentinel是redis官方推荐的高可用性解决方案, 当用redis作master-slave的高可用时,如果master本身宕 ...
- Vscode配置springboot开发环境变量
先安装必要的插件 然后在左下角setting 打开setting 配置setting.json文件 ,主要是配置了用户设置 这里面主要配置jdk环境和maven,建议下载vscode推荐的openjd ...