一.Windows安装

1.安装

将spark-3.0.0-bin-hadoop3.2.tgz解压到非中文目录

2.使用

bin/spark-shell.cmd : 提供一个交互式shell

val result: String = sc.textFile("input").flatMap(_.split(" ")).map((_, 1)).reduceByKey( _ + _).collect().mkString(",")

可以打开WEB UI:http://localhost:4040/(每一个spark-shell会初始化一个spark-context,是一个job,关闭窗口后,就没有这个页面了)

bin/spark-submit.cmd: 将程序打包后,提交运行!打包过程参考:idea开发spark程序

1)进入D:\SoftWare\spark\spark-3.0.0-bin-hadoop3.2\bin

2)将jar包上传到bin目录下,和测试的文件

3)在该目录路径输入cmd打开cmd窗口

输入以下命令测试

spark-submit --class com.spark.day01.WcCount 09sparkdemo-1.0-SNAPSHOT.jar 1.txt

二.Linux安装

Local模式

一般可以使用local模式进行测试,学习

1.安装

将spark-3.0.0-bin-hadoop3.2.tgz文件上传到linux并解压缩,放置在指定位置,改包名为spark-local

tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module
cd /opt/module
mv spark-3.0.0-bin-hadoop3.2.tgz spark-local
2.使用

进入 /opt/module/spark-local目录下

spark-shell:命令行工具

执行以下命令

[hadoop@hadoop103 spark-local]$ bin/spark-shell
[hadoop@hadoop103 spark-local]$ bin/spark-shell
20/07/29 18:54:55 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
20/07/29 18:55:06 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.
Spark context Web UI available at http://hadoop103:4041
Spark context available as 'sc' (master = local[*], app id = local-1596020106480).
Spark session available as 'spark'.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 3.0.0
/_/ Using Scala version 2.12.10 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_212)
Type in expressions to have them evaluated.
Type :help for more information. scala>

通过WEB UI 界面查看:http://hadoop103:4040/jobs/

执行代码

scala> sc.textFile("/opt/module/spark_testdata/1.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
res0: Array[(String, Int)] = Array((hello,2), (world,2), (spark,1), (hi,2))

spark-submit :提交应用

将写好的spark打包上传至linux,然后执行以下命令

[hadoop@hadoop103 spark-local]$bin/spark-submit --class com.spark.day01.WcCount /opt/module/spark_testdata/09sparkdemo-1.0-SNAPSHOT.jar /opt/module/spark_testdata/1.txt
bin/spark-submit \               --提交应用
--class com.spark.day01.WcCount \ --主类名字
/opt/module/spark_testdata/09sparkdemo-1.0-SNAPSHOT.jar \ --应用类所在的jar包
/opt/module/spark_testdata/1.txt --程序的入口参数

yarn模式

前提,环境中已经安装好hadoop

spark只是类似一个客户端(选择任意一台可以连接上YARN的机器安装即可),YARN是服务端!

1.安装

将spark-3.0.0-bin-hadoop3.2.tgz文件上传到linux并解压缩,放置在指定位置,改包名为spark-yarn

tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module
cd /opt/module
mv spark-examples_2.12-3.0.0 spark-yarn

配置

①修改hadoop的/hadoop/etc/hadoop/yarn-site.xml配置文件,然后分发

<!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property> <!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<!--允许第三方程序,例如spark将Job的日志,提交给Hadoop的历史服务 -->
<property>
<name>yarn.log.server.url</name>
<value>http://hadoop102:19888/jobhistory/logs</value>
</property>

②修改conf/spark-env.sh,添加JAVA_HOME和YARN_CONF_DIR配置

改名 : mv spark-env.sh.template spark-env.sh

YARN_CONF_DIR=/opt/module/hadoop-3.1.3/etc/hadoop
#环境变量中有可以不配
export JAVA_HOME=/opt/module/jdk1.8.0_144
2.使用

① 启动HDFS和yarn集群

jps验证下

[hadoop@hadoop103 spark-local]$ myjps
================ hadoop102 JPS =====================
1809 NameNode
2434 Jps
1939 DataNode
2281 NodeManager
================ hadoop103 JPS =====================
2867 NodeManager
2552 DataNode
2744 ResourceManager
3263 Jps
================ hadoop104 JPS =====================
1587 DataNode
1797 NodeManager
1676 SecondaryNameNode
1951 Jps

web界面验证下:

HDFS:http://hadoop102:9870/

YARN:http://hadoop103:8088/

② 提交应用

官方案例

bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10

自定义的WordCount程序

bin/spark-submit \
--class com.spark.day01.WcCount \
--master yarn \
--deploy-mode cluster \
/opt/module/spark_testdata/09sparkdemo-1.0-SNAPSHOT.jar \
hdfs://hadoop102:8020/input

注意:

​ 读取的文件最好放在hdfs路径,注意端口号别写错,core-site.xml中配置。

​ 放在本地路径可能出现文件找不到的异常。

3.spark的历史服务器集成yarn

① 修改spark-defaults.conf.template文件名为spark-defaults.conf

spark.eventLog.enabled           true
#HDFS的节点和端口和目录
spark.eventLog.dir hdfs://hadoop102:8020/spark-logs #spark的历史服务器,在spark所在节点,端口18080
spark.yarn.historyServer.address=hadoop03:18080
spark.history.ui.port=18080

注意:HDFS上的目录需要提前存在。

② 修改spark-env.sh文件,配置日志存储路径

#spark的历史服务器
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://hadoop102:8020/spark-logs
-Dspark.history.retainedApplications=30"

③ 启动spark的历史服务器

sbin/start-history-server.sh

④ 提交应用程序

bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10

⑤ 观察web界面

yarn:http://hadoop103:8088/

spark的历史服务器

hadoop的历史服务器

Spark(一)【spark-3.0安装和入门】的更多相关文章

  1. Zabbix4.0安装与入门及常见配置

    1.安装zabbix-server 环境: 10.0.0.50 zabbix-server 10.0.0.51 zabbix-web 10.0.0.52 zabbix-agent yum -y ins ...

  2. win10,vs2017+mpi v10.0 安装与入门 (详细)

    一.安装visual studio 2017  下载 地址:https://visualstudio.microsoft.com/zh-hans/vs/ 安装 我们再选择自己想要安装的东西,确认好后点 ...

  3. spark 1.6.0 安装与配置(spark1.6.0、Ubuntu14.04、hadoop2.6.0、scala2.10.6、jdk1.7)

    前几天刚着实研究spark,spark安装与配置是入门的关键,本人也是根据网上各位大神的教程,尝试配置,发现版本对应最为关键.现将自己的安装与配置过程介绍如下,如有兴趣的同学可以尝试安装.所谓工欲善其 ...

  4. Spark新手入门——3.Spark集群(standalone模式)安装

    主要包括以下三部分,本文为第三部分: 一. Scala环境准备 查看二. Hadoop集群(伪分布模式)安装 查看三. Spark集群(standalone模式)安装 Spark集群(standalo ...

  5. Spark on YARN模式的安装(spark-1.6.1-bin-hadoop2.6.tgz + hadoop-2.6.0.tar.gz)(master、slave1和slave2)(博主推荐)

    说白了 Spark on YARN模式的安装,它是非常的简单,只需要下载编译好Spark安装包,在一台带有Hadoop YARN客户端的的机器上运行即可.  Spark on YARN简介与运行wor ...

  6. 大数据技术之_19_Spark学习_01_Spark 基础解析 + Spark 概述 + Spark 集群安装 + 执行 Spark 程序

    第1章 Spark 概述1.1 什么是 Spark1.2 Spark 特点1.3 Spark 的用户和用途第2章 Spark 集群安装2.1 集群角色2.2 机器准备2.3 下载 Spark 安装包2 ...

  7. spark在不同环境下的搭建|安装|local|standalone|yarn|HA|

    spark的集群环境安装搭建 1.spark local模式运行环境搭建 常用于本地开发测试,本地还分为local单线程和local-cluster多线程; 该模式被称为Local[N]模式,是用单机 ...

  8. 平易近人、兼容并蓄——Spark SQL 1.3.0概览

    自2013年3月面世以来,Spark SQL已经成为除Spark Core以外最大的Spark组件.除了接过Shark的接力棒,继续为Spark用户提供高性能的SQL on Hadoop解决方案之外, ...

  9. 【转载】Spark SQL 1.3.0 DataFrame介绍、使用

    http://www.aboutyun.com/forum.php?mod=viewthread&tid=12358&page=1 1.DataFrame是什么?2.如何创建DataF ...

随机推荐

  1. simulate_click

    #!/bin/bashlet actual_x=104+144*$[$2-1]let actual_y=945+144*$[$1-1]adb shell input tap ${actual_x} $ ...

  2. virt-v2v命令将ESXI 虚机迁移到OpenStack中

    一简介: virt-v2v是将外部的虚拟化平台上的虚拟机转化到可以运行的KVM平台上.它可以读取在VMware.Xen运行Hyper-V和其他虚拟机管理程序上的Windows和Linux的虚拟机,并将 ...

  3. kafaka高效吞吐量-生产端,服务端,消费端

    零拷贝:sendfile 生产端 生产端:消息压缩,缓存批量发送,异步解耦 多线程并发:防止某一个业务阻塞等待 接收消息缓存 BufferPool设计:不释放 服务端 Reactor模型,顺序写,页缓 ...

  4. HTML基本使用

    HTML初识 (Hyper Text Markup Language): 超文本标记语言 「HTML骨架格式」 <!-- 页面中最大的标签 根标签 --> <html> < ...

  5. Flink sql 之AsyncIO与LookupJoin的几个疑问 (源码分析)

    本文源码基于flink 1.14 被同事问到几个关于AsyncIO和lookUp维表的问题所以翻了下源码,从源码的角度解惑这几个问题 对于AsyncIO不了解的可以看看之前写的这篇  <Flin ...

  6. redis如何解决key冲突?

    1.业务隔离 不同的业务使用不同的redis集群,或者协议使用redis的不同db. 2.良好的Redis Key的设计 格式:业务标识:系统名称:模块名称:关键词简写 比如:保险:用户管理:用户申请 ...

  7. SpringBoot 整合 Mybatis-Plus + Mysql

    mybatis-plus是mybatis的一款插件,它的主要作用是快速开发,省略mybatis的配置,具体的功能请参照官网. 开发环境: springboot,maven,mybatis-plus,m ...

  8. HTTP 缓存终极指南

    TL;DR 错误的缓存策略是如何抵消你所做的性能优化工作的. 缓存存在于客户端并且通过chrome或者其他抓包工具查看其状态信息. 客户端通过header中的各个字段做缓存的过期判断. 代理服务器上也 ...

  9. 安装mysql会出现start service错误

    安装MySQL时无法启动服务(could not start the service MYSQL .Error:0)安装mysql会出现start service错误安装mysql时 配置到start ...

  10. [cf1361E]James and the Chase

    称一个点是"好点",当且仅当其到其余所有点恰存在一条简单路径 结论1:$x$为好点当且仅当以$x$为根的dfs树包含所有点且非树边均为返祖边 若不包含所有点,那么$x$到不被包含的 ...