不规则区域的填充算法

一、简单递归

利用Dfs实现简单递归填充。
核心代码:

 // 简单深度搜索填充 (四连通)
void DfsFill(int x, int y)
{
if (x < || y < || x> || y>)
{
return;
}
if (a[x][y] == )
{
a[x][y] = ;
DfsFill(x - , y);
DfsFill(x + , y);
DfsFill(x, y - );
DfsFill(x, y + );
}
}
二、扫描线种子填充算法(四连通)
1. 种子点(x,y)入栈。
2. 栈顶元素(x,y)出栈作为种子点。
3. 从种子点(x,y)开始沿着扫描线向左右两个方向逐个像素进行填充,直到到达边界像素为止。
4. 将上述填充区段的左右端点的横坐标分别记为xleft和xright.
5. 在与当前扫描线相邻的上下两条扫描线的[xleft,xright]范围内进行检查,
看看是否全部为边界像素或已填充像素,若存在着非边界且未填充的像素,那么将该区段的最右端像素作为种子点入栈。

 // 扫描线种子填充算法(四连通)
void ScanFill(int x, int y)
{
if (a[x][y]!=)
{
return;
}
Pos first(x, y);
s.push(first);
while (!s.empty())
{
int rightX = ;
int leftX = ;
Pos cur = s.top();
s.pop();
a[cur.x][cur.y] = ;
// 遍历当前行
for (int i = ; i < ; i++)
{
if (cur.x + i < )
{
if (a[cur.x + i][cur.y] == )
a[cur.x + i][cur.y] = ;
else
{
rightX = cur.x + i - ;
break;
}
}
else
{
rightX = ;
}
}
for (int i = ; i < ; i++)
{
if (cur.x - i > -)
{
if (a[cur.x - i][cur.y] == )
a[cur.x - i][cur.y] = ;
else
{
leftX = cur.x - i + ;
break;
}
}
else
{
leftX = ;
}
} cout << leftX <<","<<rightX << endl; // 判断上行
int upRightX = -;
for (int i = leftX;i<=rightX;i++)
{
upRightX = -;
if (a[i][cur.y+]== && cur.y+<)
{
upRightX = i;
}
if (upRightX != -)
{
Pos temPos(upRightX, cur.y + );
s.push(temPos);
}
} // 判断下行
int downRightX = -;
for (int i = leftX; i <= rightX; i++)
{
downRightX = -;
if (a[i][cur.y - ] == && cur.y - >=)
{
downRightX = i;
}
if (downRightX != -)
{
Pos temPos(downRightX, cur.y - );
s.push(temPos);
}
} }
}

完整代码:

 #include <cmath>
#include <stack>
#include "gl/glut.h"
#include "iostream"
using namespace std; #define PI 3.14 struct Pos
{
int x;
int y;
Pos(int mx, int my) :x(mx), y(my) {};
Pos() :x(), y() {};
}; stack<Pos> s;
int a[][] = { }; void init(void)
{
glClearColor(1.0, 1.0, 1.0, 1.0);
glMatrixMode(GL_PROJECTION);//设置投影矩阵
gluOrtho2D(0.0, 600.0, 0.0, 600.0);//二维视景区域
glPointSize(12.0f);
}
// 画棋子
void Drawtri(int x,int y,int color)
{
double n = ;//分段数
float R = ;//半径
int i;
if (color == )
{
glColor3f(1.0, 0.0, 0.0);
}
else if (color == )
{
glColor3f(0.0, 1.0, 0.0);
}
glBegin(GL_POLYGON);
glVertex2f(x, y);
for (i = ; i <= n; i++)
glVertex2f(R*cos( * PI / n * i)+x, R*sin( * PI / n * i)+y);
glEnd();
glPopMatrix();
} // 绘制格线
void playMap()
{
glColor3f(0.0, 0.0, 0.0);
glBegin(GL_LINES);
for (int i = ; i < ; i += )
{
glVertex2f(i, );
glVertex2f(i, );
}
for (int j = ; j < ; j += )
{
glVertex2f(, j);
glVertex2f(, j);
}
glEnd();
for (int k = ; k < ; k++)
{
for (int l = ; l < ; l++)
{
if (a[k][l] == )
{
Drawtri(k * + , l * + ,);
}
else if (a[k][l] == )
{
Drawtri(k * + , l * + , );
}
}
}
} // 简单深度搜索填充 (四连通)
void DfsFill(int x, int y)
{
if (x < || y < || x> || y>)
{
return;
}
if (a[x][y] == )
{
a[x][y] = ;
DfsFill(x - , y);
DfsFill(x + , y);
DfsFill(x, y - );
DfsFill(x, y + );
}
} // 扫描线种子填充算法(四连通)
void ScanFill(int x, int y)
{
if (a[x][y]!=)
{
return;
}
Pos first(x, y);
s.push(first);
while (!s.empty())
{
int rightX = ;
int leftX = ;
Pos cur = s.top();
s.pop();
a[cur.x][cur.y] = ;
// 遍历当前行
for (int i = ; i < ; i++)
{
if (cur.x + i < )
{
if (a[cur.x + i][cur.y] == )
a[cur.x + i][cur.y] = ;
else
{
rightX = cur.x + i - ;
break;
}
}
else
{
rightX = ;
}
}
for (int i = ; i < ; i++)
{
if (cur.x - i > -)
{
if (a[cur.x - i][cur.y] == )
a[cur.x - i][cur.y] = ;
else
{
leftX = cur.x - i + ;
break;
}
}
else
{
leftX = ;
}
} cout << leftX <<","<<rightX << endl; // 判断上行
int upRightX = -;
for (int i = leftX;i<=rightX;i++)
{
upRightX = -;
if (a[i][cur.y+]== && cur.y+<)
{
upRightX = i;
}
if (upRightX != -)
{
Pos temPos(upRightX, cur.y + );
s.push(temPos);
}
} // 判断下行
int downRightX = -;
for (int i = leftX; i <= rightX; i++)
{
downRightX = -;
if (a[i][cur.y - ] == && cur.y - >=)
{
downRightX = i;
}
if (downRightX != -)
{
Pos temPos(downRightX, cur.y - );
s.push(temPos);
}
} }
} void displayFcn(void)
{
glClear(GL_COLOR_BUFFER_BIT);
playMap();
glFlush();
} void mouse(GLint button, GLint action, GLint x, GLint y)
{
int curX, curY;
if (button == GLUT_LEFT_BUTTON && action == GLUT_DOWN)
{
curX = x / ;
curY = ( - y) / ;
a[curX][curY] = ;
glutPostRedisplay();//重绘窗口
}
if (button == GLUT_RIGHT_BUTTON && action == GLUT_DOWN)
{
curX = x / ;
curY = ( - y) / ;
ScanFill(curX, curY); glutPostRedisplay();//重绘窗口
}
} void main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition(, );
glutInitWindowSize(, );
glutCreateWindow("mouse"); init();
glutDisplayFunc(displayFcn); glutMouseFunc(mouse); glutMainLoop(); }

[OpenGL] 不规则区域的填充算法的更多相关文章

  1. Open gl 的不规则图形的4联通种子递归填充和扫描线种子递归填充算法实现

    实验题目:不规则区域的填充算法 实验目的:验证不规则区域的填充算法 实验内容:利用VC与OpenGL,实现不规则区域的填充算法. 1.必做:实现简单递归的不规则区域填充算法. 2.选做:针对简单递归算 ...

  2. openGL实现图形学扫描线种子填充算法

    title: "openGL实现图形学扫描线种子填充算法" date: 2018-06-11T19:41:30+08:00 tags: ["图形学"] cate ...

  3. 【GIS新探索】算法实现在不规则区域内均匀分布点

    1 概要 在不规则区域内均匀分布点,这个需求初看可能不好理解.如果设想一下需求场景就比较简单了. 场景1:在某个地区范围内,例如A市区有100W人口,需要将这100W人口在地图上面相对均匀的标识出来. ...

  4. CGA填充算法之种子填充算法

    CGA填充算法之种子填充算法 平面区域填充算法是计算机图形学领域的一个很重要的算法,区域填充即给出一个区域的边界 (也可以是没有边界,只是给出指定颜色),要求将边界范围内的所有象素单元都修改成指定的颜 ...

  5. 种子填充算法描述及C++代码实现

    项目需要看了种子填充算法,改进了算法主要去除面积小的部分.种子填充算法分为两种,简单的和基于扫描线的方法,简单的算法如下描述(笔者针对的是二值图像): (1)从上到下,从左到有,依次扫描每个像素: ( ...

  6. 图像处理之泛洪填充算法(Flood Fill Algorithm)

    泛洪填充算法(Flood Fill Algorithm) 泛洪填充算法又称洪水填充算法是在很多图形绘制软件中常用的填充算法,最熟悉不过就是 windows paint的油漆桶功能.算法的原理很简单,就 ...

  7. 漫水填充算法 - cvFloodFill() 实现

    前言 漫水填充算法是用来标记一片区域的:设置一个种子点,然后种子点附近的相似点都被填充同一种颜色. 该算法应用性很广,比如目标识别,photoshop 的魔术棒功能等等,是填充类算法中应用最为广泛的一 ...

  8. 图像处理------泛洪填充算法(Flood Fill Algorithm) 油漆桶功能

    泛洪填充算法(Flood Fill Algorithm) 泛洪填充算法又称洪水填充算法是在很多图形绘制软件中常用的填充算法,最熟悉不过就是 windows paint的油漆桶功能.算法的原理很简单,就 ...

  9. OpenCV空洞填充算法

    讨论帖: http://bbs.csdn.net/topics/391542633 在Matlab下,使用imfill可以很容易的完成孔洞填充操作,感觉这是一个极为常用的方法,然而不知道为什么Op ...

随机推荐

  1. [Game-0001] 新手引导逻辑梳理

    欢迎任何形式的转载,但请务必注明出处:http://www.cnblogs.com/liangjingyang 欢迎任何形式的转载,但请务必注明出处:http://www.cnblogs.com/li ...

  2. MSYS2开发环境搭建(无幻的博客,编译OpenSSL,可使用pacman升级)

    MSYS2开发环境搭建 软件安装 下载msys2-x86_64软件包,双击安装到某根目录下,比如D:\msys64. pacman是MSYS2自带的软件管理工具: 可通过修改msys64\etc\pa ...

  3. Qt发展历史及其特点简介(没有哪一种方案能够独霸Windows)

    Qt 是一个跨平台的C++应用程序框架,支持Windows.Linux.Mac OS X.Android.iOS.Windows Phone.嵌入式系统等.也就是说,Qt 可以同时支持桌面应用程序开发 ...

  4. dpkg:处理 xxx (--configure)时出错解决方案

    出现问题如下: 正在设置 nfs-common (1:1.2.2-4ubuntu5) ... dpkg:处理 nfs-common (--configure)时出错:  子进程 已安装 post-in ...

  5. fork和僵尸进程

    1. 关于fork fork()函数: 用于创建一个进程,所创建的进程复制父进程的代码段/数据段/BSS段/堆/栈等所有用户空间信息:在内核中操作系统重新为其申请了一个PCB,并使用父进程的PCB进行 ...

  6. 管理分布式session的四种方式。

    应用服务器的高可用架构设计最为理想的是服务无状态,但实际上业务总会有状态的,以session记录用户信息的例子来讲,未登入时,服务器没有记入用户信息的session访问网站都是以游客方式访问的,账号密 ...

  7. Laravel --- Laravel 5.3 队列使用方法

    一.设置存储方式 在config/queue.php中查看队列驱动,在.env 设置[QUEUE_DRIVER] 主要介绍数据库驱动 二.数据库驱动 1.修改.env CACHE_DRIVER=fil ...

  8. java基础第十三篇之Collection

    常见的几种数据结构: * 1.堆栈:先进后出 * 2.队列:先进先出 * 3.数组:查找快,增删慢 * 4.链表:查找慢,增删快  import java.util.LinkedList; /* * ...

  9. 11 CSS的三种引入方式和基本选择器

    <!-- 整体说明: 1.CSS的三种引入方式 (1)行内样式 (2)内接样式 (3)外接样式 2.CSS的基本选择器 (1)id选择器 (引用方式:#id) (2)标签选择器(引用方式:标签名 ...

  10. mysql批量update操作时出现锁表

    https://www.cnblogs.com/wodebudong/articles/7976474.html 最近遇到一件锁表的情况,发现更新的语句where检索的字段,没有建索引,且是批量操作的 ...