「一本通 1.3 例 5」weight]
「一本通 1.3 例 5」weight
题面
给定原数列 \(a_1,a_2,a_n\) ,给定每个数的前缀和以及后缀和,并且打乱顺序。
给出一个集合 \(S\) 要求从集合 \(S\) 中找到合适的数,满足给定的所有数例前缀和和后缀和,答案保证最小的
思路
很多人上来没有思路,不知从何搜起
简单讲就是找到正确的搜索顺序,往里面放数就好了
他不是有前缀和也有后缀和嘛~,而且还是混着的,
那么你就直接排序,然后安排两个指针 \(L\) 和 \(R\) 的表示左边和右边,
记录每个 \(L\) 的前缀和 和 \(R\) 的后缀和,然后用当前的你所枚举的(题中给出的混杂数列)\(A[k]\) 相减,即 \(A[k] - Sum[L] \ 或者
A[k] - Sum[r]\) ,只要相减的差在给定集合 \(S\) 里,直接搜索下一层,两个指针肯定会跑到一起,最后再判断答案合不合限定范围就可以了 \(Over\)
-----------------------------------------------------------------------分割线----------------------------
详细的说 就是通过给定的条件,找到约束条件,进而说明我为什么要选择上面的搜索顺序和思路
- 令 满足要求的 \(SumL_i\) (原数列 \(N\),右同),表示位置 \(i\) 的前缀和 ,
- 令 满足要求的 \(SumL_j\) 表示位置 \(j\) 的后缀和,
- 令 \(ans_i\) 为答案数列
不难发现
可以将打乱的先排序,最后的数\(Max\)显然就是 \(SumL_n\) 和 \(SumR_n\), 最小的数 \(Min\) 要不是最左边,要不是最右边。(剪枝1)
我们从已知条件的数据当中任意取出两个数的时候,只会出现以下两种情况:
当为一种情况时,即都为前缀和或后缀和(后面的前缀和和后缀和统一用 \(Sum\) 表示,以为我说的是第一种情况),
那么 \(Sum_{i+1} - Sum_i\) 就是位置 \(i\) 的 \(ans[i]\) ,所以我们找到了达成要求的条件,即知道满足 两个\(A[k] - A[p] (k,p均为变量)\) 的差值在集合 \(S\) 中,那么就找到了当前正确的 \(Sum_i\)
凭着是上面的条件,我们可以将枚举 \(A[k]\) ,并放入相应的位置中,那么他放的可能无非就两种,一是放在左边,二是放在右边,那么枚举时记录一下左右当前位置 \(L\) 和 \(R\) (即在 \(L-R\) 范围内都是还没填上数的),一直搜到 \(L == R\) ,输出就行,(因为开始我先进行了排序,所以找到的答案一定为最小序列的)
终于说完了~累死了
Code
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
//#define int long long
const int manx = 1e7;
const int maxm = 1e8;
const int inf = 0x3f3f3f3f;
int read(){
char c = getchar();int x = 0,f = 1;
for( ;!isdigit(c);c = getchar()) if(c == '-') f = -1;
for( ;isdigit(c);c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
int a[manx],ans[manx];
bool vis[manx],flag;
int n, m, i;
void dfs(int k ,int l ,int r ,int sum_l ,int sum_r){
/*
k 表示枚举的数据给出的已经排完序的A[k]
l,r 表示搜到的左右边界(l,r是我们要填数的其中一个,所以记录的都是他们前一个或后一个的和),
sum_l,sum_r 分别记录的是l-1的前缀和,r+1的后缀和,
*/
if(flag == true) return;//完成深搜
if(l == r){
if(vis[a[k] - sum_l] == false && vis[a[k] - sum_r] == false) return;
if( a[2 * n] - sum_l - sum_r < 1 || a[2 * n] - sum_l - sum_r > 500) return; //这里被卡,防止在加数的先选的大的,剩下个小的,之后一相减就成负数了
ans[l] = a[2 * n] - sum_l - sum_r;
for(i = 1;i <= n; i++) printf("%d ",ans[i]);
cout<<'\n';
flag = true;
}
if(vis[a[k] - sum_l] == true ){
ans[l] = a[k] - sum_l;
dfs(k + 1 ,l + 1 ,r ,a[k] ,sum_r);
}
if(vis[a[k] - sum_r] == true ){
ans[r] = a[k] - sum_r;
dfs(k + 1 ,l , r - 1,sum_l , a[k]);
}
}
int main(){
//freopen("dd.in","r",stdin);
//freopen("dd.out","w",stdout);
n = read();
for(i = 1;i <= n * 2;i ++) a[i] = read();
sort(a + 1 ,a + 1 + n * 2);
m = read();
for(i = 1;i <= m; i++) {
int x = read();
vis[x] = true;//表示x这数在不在集合S当中
}
dfs(1,1,n,0,0);
return 0;
}
最累的题解了~
「一本通 1.3 例 5」weight]的更多相关文章
- 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie
题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1≤r1<l2≤r2≤N,x⨁yx\bigoplus yx⨁y 表示 ...
- LOJ#10064. 「一本通 3.1 例 1」黑暗城堡
LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...
- 「LOJ#10043」「一本通 2.2 例 1」剪花布条 (KMP
题目描述 原题来自:HDU 2087 一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢? 输入格式 输入数据 ...
- LOJ #10131 「一本通 4.4 例 2」暗的连锁
LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...
- 「LOJ#10050」「一本通 2.3 例 2」The XOR Largest Pair (Trie
题目描述 在给定的 $N$ 个整数 $A_1,A_2,A_3...A_n$ 中选出两个进行异或运算,得到的结果最大是多少? 输入格式 第一行一个整数$N$. 第二行$N$个整数$A_i$. 输出格式 ...
- 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd
题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...
- 「LOJ#10034」「一本通 2.1 例 2」图书管理 (map
题目描述 图书管理是一件十分繁杂的工作,在一个图书馆中每天都会有许多新书加入.为了更方便的管理图书(以便于帮助想要借书的客人快速查找他们是否有他们所需要的书),我们需要设计一个图书查找系统. 该系统需 ...
- Loj 10115 「一本通 4.1 例 3」校门外的树 (树状数组)
题目链接:https://loj.ac/problem/10115 题目描述 原题来自:Vijos P1448 校门外有很多树,学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的 ...
- LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci
题目链接 题目大意 $$F[i]=F[i-1]+F[i-2]\ (\ F[1]=1\ ,\ F[2]=1\ )$$ $$T[i]=F[1]+2F[2]+3F[3]+...+nF[n]$$ 求$T[n] ...
随机推荐
- 白嫖JetBrains正版全家桶!
使用自己的开源项目,是可以白嫖JetBrains正版全家桶的! 前言 之前在学Go的时候,想着要用什么编辑器,网上的大佬都讲,想省事直接用Goland,用VsCode配置会存在一些未知的使用体验问题, ...
- 企业集群架构-03-NFS
NFS 目录 NFS NFS基本概述 NFS应用场景 NFS实现原理 NFS总结 NFS服务端安装 环境准备 服务端安装NFS 服务端NFS配置 服务端开机自启 服务端验证配置 NFS客户端挂载卸载 ...
- js--数组的every()和some()方法检测数组是否满足条件的使用介绍
前言 阅读本文之前先来思考一个问题,如何如实现判断一个数组中是否存在满足条件的元素,如何去判断数组中是否全部元素都满足判断条件,这里可能能想到使用for循环遍历数组,if()判断每一项是否符合条件,同 ...
- 盘点 Java 开发 2020 年发生的几件大事,你必须得知道!
2021 年了,在过去的一年 Java 软件开发行业都发生了哪些重大事件呢? 这篇栈长带大家回顾一下,其实在元旦的<滚蛋吧,2020>也略有介绍,这篇就更加详细的总结一下. 1.Java ...
- mysql 双主复制 windows10
1. 整体思路 MySQL开始复制是很简单的过程,不过,根据特定的应用场景,都会在基本的步骤上有一些变化.最简单的场景就是一个新安装的master和slave,整个过程如下:(1)在每个服务器上创建一 ...
- 基于Python的接口自动化实战-基础篇之pymysql模块操作数据库
引言 在进行功能或者接口测试时常常需要通过连接数据库,操作和查看相关的数据表数据,用于构建测试数据.核对功能.验证数据一致性,接口的数据库操作是否正确等.因此,在进行接口自动化测试时,我们一样绕不开接 ...
- 【JDBC核心】批量插入
批量插入 批量执行 SQL 语句 当需要成批插入或者更新记录时,可以采用 Java 的批量更新机制,这一机制允许多条语句一次性提交给数据库批量处理.通常情况下比单独提交处理更有效率. JDBC 的批量 ...
- 【MyBatis】MyBatis 动态 SQL
MyBatis 动态SQL if 可以根据实体类的不同取值,使用不同的 SQL 语句来进行查询. 使用动态 SQL 最常见情景是根据条件包含 where 子句的一部分. 持久层 DAO 接口: pub ...
- 【剑指 Offer】06.从尾到头打印链表
题目描述 输入一个链表的头节点,从尾到头反过来返回每个节点的值(用数组返回). 示例 1: 输入:head = [1,3,2] 输出:[2,3,1] 限制: 0 <= 链表长度 <= 10 ...
- 一文带你探究Sentinel的独特初始化
摘要:本系列通过作者对Redis Sentinel源码的理解,详细说明Sentinel的代码实现方式. Redis Sentinel 是Redis提供的高可用模型解决方案.Sentinel可以自动监测 ...