Link of the Paper: https://arxiv.org/abs/1711.09151

Motivation:

  • LSTM units are complex and inherently sequential across time.
  • Convolutional networks have shown advantages on machine translation and conditional image generation.

Innovation:

  • The authors develop a convolutional ( CNN-based ) image captioning method that shows comparable performance to an LSTM based method on standard metrics.

    

  • The authors analyze the characteristics of CNN and LSTM nets and provide useful insights such as -- CNNs produce more entropy ( useful for diverse predictions ), better classification accuracy, and do not suffer from vanishing gradients.

Improvement:

  • Improved performance with a CNN model that uses Attention Mechanism to leverage spatial image features.

General Points:

  • Image Captioning is applicable to virtual assistants, editing tools, image indexing and support of the disabled.
  • Image Captioning is a basic ingredient for more complex operations such as storytelling and visual summarization.
  • An illustration of a classical RNN architecture for image captioning is provided below.

Paper Reading - Convolutional Image Captioning ( CVPR 2018 )的更多相关文章

  1. Paper Read: Convolutional Image Captioning

    Convolutional Image Captioning 2018-11-04 20:42:07 Paper: http://openaccess.thecvf.com/content_cvpr_ ...

  2. Paper Reading - Learning to Evaluate Image Captioning ( CVPR 2018 ) ★

    Link of the Paper: https://arxiv.org/abs/1806.06422 Innovations: The authors propose a novel learnin ...

  3. Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★

    Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...

  4. Paper Reading: Stereo DSO

    开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse ...

  5. 爬取CVPR 2018过程中遇到的坑

    爬取 CVPR 2018 过程中遇到的坑 使用语言及模块 语言: Python 3.6.6 模块: re requests lxml bs4 过程 一开始都挺顺利的,先获取到所有文章的链接再逐个爬取获 ...

  6. 在矩池云上复现 CVPR 2018 LearningToCompare_FSL 环境

    这是 CVPR 2018 的一篇少样本学习论文:Learning to Compare: Relation Network for Few-Shot Learning 源码地址:https://git ...

  7. Paper Reading - Long-term Recurrent Convolutional Networks for Visual Recognition and Description ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1411.4389 Main Points: A novel Recurrent Convolutional Arch ...

  8. Paper Reading - CNN+CNN: Convolutional Decoders for Image Captioning

    Link of the Paper: https://arxiv.org/abs/1805.09019 Innovations: The authors propose a CNN + CNN fra ...

  9. Paper Reading - Deep Captioning with Multimodal Recurrent Neural Networks ( m-RNN ) ( ICLR 2015 ) ★

    Link of the Paper: https://arxiv.org/pdf/1412.6632.pdf Main Points: The authors propose a multimodal ...

随机推荐

  1. 课时46.label标签(掌握)

    我们点击QQ注册页面,发现了一个问题,当我们点击密码两个字的时候,输入框聚焦了,而点击确认密码的时候,输入框也聚焦了,而我们上节课做的页面,这么点击,并不聚焦 1.默认情况下文字和输入框是没有关联关系 ...

  2. BZOJ2298: [HAOI2011]problem a(带权区间覆盖DP)

    Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1747  Solved: 876[Submit][Status][Discuss] Descripti ...

  3. Linux下安装 Redis

    一.部署前准备 1.首先上官网下载Redis 最新稳定的压缩包 2.通过远程管理工具,将压缩包拷贝到Linux服务器中,执行解压操作 [root@CentOS6 ~]# tar zxvf redis- ...

  4. C#获取本地磁盘信息

    直接上干货简单易懂 //磁盘监控(远程/本地) //需要引用System.Management.dll public class RemoteMonitoring { private static s ...

  5. webpack 优化代码 让代码加载速度更快

    一,如何优化webpack构建 (1),缩小文件搜索范围, 优化Loader配置 module.exports = { module: { rules: [ { test:/\.js$/, use:[ ...

  6. php 冒泡法 排序

    <?php /** * php 冒泡法 * @param $arr * @param string $order 排序符 * @return $arr */ function orderarr( ...

  7. FireDAC的SQLite初探

    // uses FireDAC.VCLUI.Wait  之后, 可不用添加 TFDGUIxWaitCursor TFDConnection          // 数据连接 TFDQuery      ...

  8. python2x和python3x的一些区别

    python2x:各种按照自己代码习惯给python贡献源码 python3x:重写之后的源码,优美,清晰,简单 版本 打印函数 rang函数 输入函数 python2x print 或 print( ...

  9. 用JavaScript动态实现单元格合并

    不太想描述,大家自行理解吧,这样可能记忆会深一点儿- <script type="text/javascript"> function mergeCells(){ va ...

  10. 关于C链表的实现

    学习了数据结构后,自己学习写了一个链表的程序.初步功能是实现了.但是不知道会不会有一些隐含的问题.所以希望大佬指导指导 /******************/ /*一个小的链表程序*/ /***** ...