《DSP using MATLAB》Problem 8.26
代码:
%% ------------------------------------------------------------------------
%% Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf(' <DSP using MATLAB> Problem 8.26 \n\n'); banner();
%% ------------------------------------------------------------------------ c = [1, 1]; d = [1, 5, 6]; % Numerator and Denominator of Ha(s)
T = 0.2; Fs = 1/T; % Sample interval %[b, a] = imp_invr(c, d, T) % digital Num and Deno coefficients of H(z)
[b, a] = mzt(c, d, T) % digital Num and Deno coefficients of H(z) % Calculation of Impulse Response:
%[hs, xs, ts] = impulse(c, d);
figure('NumberTitle', 'off', 'Name', 'Problem 8.26 Imp & Freq Response')
set(gcf,'Color','white');
t = [0:0.01:4]; subplot(2,1,1); impulse(c,d,t); grid on; % Impulse response of the analog filter
axis([0,4,-0.1,1]);hold on n = [0:1:4/T]; hn = filter(b,a,impseq(0,0,4/T)); % Impulse response of the digital filter
stem(n*T,hn); xlabel('time in sec'); title (sprintf('Impulse Responses, T=%.2f',T));
hold off %n = [0:1:29];
%hz = impz(b, a, n); % Calculation of Frequency Response:
[dbs, mags, phas, wws] = freqs_m(c, d, 2*pi/T); % Analog frequency s-domain [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a); % Digital z-domain %% -----------------------------------------------------------------
%% Plot
%% ω = ΩT = 2πF/fs
%% ----------------------------------------------------------------- M = 1/T; % Omega max subplot(2,1,2); plot(wws/(2*pi),mags*Fs,'b', wwz/(2*pi)*Fs,magz,'r'); grid on; xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude'); text(1.4,.5,'Analog filter'); text(1.5,1.5,'Digital filter');
运行结果:
可以看出,采样间隔T越小,数字滤波器幅度响应越接近模拟滤波器。
《DSP using MATLAB》Problem 8.26的更多相关文章
- 《DSP using MATLAB》Problem 7.26
注意:高通的线性相位FIR滤波器,不能是第2类,所以其长度必须为奇数.这里取M=31,过渡带里采样值抄书上的. 代码: %% +++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 4.26
Y(z)部分分式展开, 零状态响应和零输入响应的部分分式展开,
- 《DSP using MATLAB》Problem 5.24-5.25-5.26
代码: function y = circonvt(x1,x2,N) %% N-point Circular convolution between x1 and x2: (time domain) ...
- 《DSP using MATLAB》Problem 7.16
使用一种固定窗函数法设计带通滤波器. 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 6.8
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 2.16
先由脉冲响应序列h(n)得到差分方程系数,过程如下: 代码: %% ------------------------------------------------------------------ ...
- 《DSP using MATLAB》Problem 7.32
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.30
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.27
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
随机推荐
- 使用idea从svn检出项目
1.创建空的工程 2. 3. 编辑项目进行提交svn服务器进行自动整合
- 21-2-substring
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 十个非常实用的MySQL命令
建赟 版主 楼主 前言 今天介绍一些MySQL常用的实用命令,都是一些比较简单的命令.已经知道的朋友,就当是巩固吧,不知道的童鞋,可以好好在自己的机器上,练习下. 0. 显示数据库 命令:s ...
- Python全栈开发:django网络框架(一)
Python的WEB框架有Django.Tornado.Flask 等多种,Django相较与其他WEB框架其优势为:大而全,框架本身集成了ORM.模型绑定.模板引擎.缓存.Session等诸多功能. ...
- Git 获取项目git clone
git clone 克隆项目 git clone 实际上是一个封装了其他几个命令的命令. 它创建了一个新目录,切换到新的目录,然后 git init 来初始化一个空的 Git 仓库, 然后为你指定的 ...
- CSIC_716_20191113【装饰器进阶以及迭代器】
装饰器的进阶主要包含叠加装饰器和有参装饰器 叠加装饰器:在一个被装饰的对象中,添加多个装饰器. 为什么要用叠加装饰器的原因: -每一个新的功能都应该写一个新的装饰器,否则会导致,代码冗余,结构不 ...
- Java 多线程 - 原子操作AtomicInteger & CAS(Compare-and-Swap)
原子类简介:https://www.cnblogs.com/stephen0923/p/4505902.html AtomicInteger 介绍: https://yuwenlin.iteye.co ...
- 【JZOJ6384】珂学家
description analysis 注意配出来的饮料不可以再配成其他饮料,所以肯定有\(O(n^2)\)的枚举 而且可口度两两互不相同,搞得我以为这是神仙题 考虑把两个试剂\([l_1,r_1] ...
- python2与python3编码(练习)
#_author:来童星#date:2019/12/9import jsons='star'a=s.encode('utf8')print(s,type(s))# star <class 'st ...
- 初步了解Redis
参考: https://juejin.im/post/5b4dd82ee51d451925629622?utm_source=gold_browser_extension https://www.cn ...