p2460:

#include<cstdio>
#include<algorithm>
using namespace std;
#define N 1001
typedef long long ll;
struct Point{ll p;int v;}a[N];
bool operator < (const Point &a,const Point &b){return a.v>b.v;}
int n,ans;
ll base[64];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%lld%d",&a[i].p,&a[i].v);
sort(a+1,a+n+1);
for(int i=1;i<=n;++i)
{
for(int j=63;j>=0;--j)
if((a[i].p>>j)&1)
{
if(!base[j])
{
base[j]=a[i].p;
break;
}
a[i].p^=base[j];
}
if(a[i].p) ans+=a[i].v;
}
printf("%d\n",ans);
return 0;
}

p3105:

#include<cstdio>
#include<algorithm>
using namespace std;
#define N 101
typedef long long ll;
int n,a[N],base[32];
ll ans,sum;
bool cmp(const int &a,const int &b){return a>b;}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i)
{
scanf("%d",&a[i]);
sum+=(ll)a[i];
}
sort(a+1,a+1+n,cmp);
for(int i=1;i<=n;++i)
{
int t=a[i];
for(int j=31;j>=0;--j)
if((t>>j)&1)
{
if(!base[j])
{
base[j]=t;
break;
}
t^=base[j];
}
if(!t) ans+=(ll)a[i];
}
printf("%lld\n",ans==sum?(-1):ans);
return 0;
}

【贪心】【线性基】bzoj2460 [BeiJing2011]元素 / bzoj3105 [cqoi2013]新Nim游戏的更多相关文章

  1. BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基

    一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...

  2. BZOJ3105: [cqoi2013]新Nim游戏

    题解: 线性基?类似于向量上的基底. 此题题解戳这里:http://blog.csdn.net/wyfcyx_forever/article/details/39477673 代码: #include ...

  3. 【题解】 bzoj3105: [cqoi2013]新Nim游戏 (线性基+贪心)

    bzoj3105,懒得复制 Solution: 首先你要有一个前置技能:如果每堆石子异或和为\(0\),则先手比输 这题我们怎么做呢,因为我们没人要先取掉几堆,为了赢对方一定会使剩下的异或和为\(0\ ...

  4. BZOJ3105:[CQOI2013]新Nim游戏(线性基,贪心)

    Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...

  5. bzoj3105 [cqoi2013]新Nim游戏——贪心+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3105 首先,要先手必胜,就不能取后让剩下的火柴中存在异或和为0的子集,否则对方可以取成异或和 ...

  6. BZOJ3105: [cqoi2013]新Nim游戏(Xor线性无关组)

    Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...

  7. 【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基

    [BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个 ...

  8. 【BZOJ3105】新Nim游戏(线性基)

    [BZOJ3105]新Nim游戏(线性基) 题面 BZOJ Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以 ...

  9. BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论

    BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...

随机推荐

  1. js密码的匹配正则

    匹配的密码是 数字大写或者小写的字母.符号. if(pwd.match(/[\d]/) && pwd.match(/[A-Za-z]/) && pwd.match(/[ ...

  2. bzoj 1150 贪心

    首先选取的线段一定是相邻两个端点线段,那么我们贪心的考虑这个问题,我们先在这n-1条线段中选出最短的一条,然后将这条线段的值改为左面的线段的值+右面的线段的值-自己的值,用这条线段取代原来这三条线段, ...

  3. 关于vscode的个人配置

      vs code官方下载地址 : https://code.visualstudio.com/Download   下载好的vs code相当是一款纯文本编辑器,接下来开始进行对其配置:   页面设 ...

  4. spring自定义参数绑定(日期格式转换)

    spring参数绑定时可能出现 BindException(参数绑定异常),类似下面的日期绑定异常(前台传过来是String类型,实际的pojo是Date类型) default message [Fa ...

  5. Python学习笔记 - day4 - 流程控制

    Python流程控制 Python中的流程控制主要包含两部分:条件判断和循环. Python的缩进和语法 为什么要在这里说缩进和语法,是因为将要学习的条件判断和分支将会涉及到多行代码,在java.c等 ...

  6. 爬取genome的网页和图片

    # -*- coding: utf-8 -*- # @Time : 2018/03/08 10:32 # @Author : cxa # @File : gethtmlandimg.py # @Sof ...

  7. PL/SQL 05 存储过程 procedure

    --存储过程(不带参数) create or replace procedure 存储过程名as  变量.常量声明;begin  代码;end; --存储过程(带输入参数) create or rep ...

  8. SpringMVC - 个人对@ModelAttribute的见解 和 一些注入参数、返回数据的见解

    2016-8-23修正. 因为对modelattribute这个注解不了解,所以在网上搜寻一些答案,感觉还是似懂非懂的,所以便自己测试,同时还结合网上别人的答案:最后得出我自己的见解和结果,不知道正确 ...

  9. P1489 猫狗大战

    P1489 猫狗大战 题目描述 新一年度的猫狗大战通过SC(星际争霸)这款经典的游戏来较量,野猫和飞狗这对冤家为此已经准备好久了,为了使战争更有难度和戏剧性,双方约定只能选择Terran(人族)并且只 ...

  10. Stack的三种含义 ----超级经典 明白了 栈 的三种含义

    来自:http://www.ruanyifeng.com/blog/2013/11/stack.html ----------------------------------------------- ...