吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import neighbors, datasets
from sklearn.model_selection import train_test_split def create_regression_data(n):
'''
创建回归模型使用的数据集
'''
X =5 * np.random.rand(n, 1)
y = np.sin(X).ravel()
# 每隔 5 个样本就在样本的值上添加噪音
y[::5] += 1 * (0.5 - np.random.rand(int(n/5)))
# 进行简单拆分,测试集大小占 1/4
return train_test_split(X, y,test_size=0.25,random_state=0) #KNN回归KNeighborsRegressor模型
def test_KNeighborsRegressor(*data):
X_train,X_test,y_train,y_test=data
regr=neighbors.KNeighborsRegressor()
regr.fit(X_train,y_train)
print("Training Score:%f"%regr.score(X_train,y_train))
print("Testing Score:%f"%regr.score(X_test,y_test)) #获取回归模型的数据集
X_train,X_test,y_train,y_test=create_regression_data(1000)
# 调用 test_KNeighborsRegressor
test_KNeighborsRegressor(X_train,X_test,y_train,y_test)
def test_KNeighborsRegressor_k_w(*data):
'''
测试 KNeighborsRegressor 中 n_neighbors 和 weights 参数的影响
'''
X_train,X_test,y_train,y_test=data
Ks=np.linspace(1,y_train.size,num=100,endpoint=False,dtype='int')
weights=['uniform','distance'] fig=plt.figure()
ax=fig.add_subplot(1,1,1)
### 绘制不同 weights 下, 预测得分随 n_neighbors 的曲线
for weight in weights:
training_scores=[]
testing_scores=[]
for K in Ks:
regr=neighbors.KNeighborsRegressor(weights=weight,n_neighbors=K)
regr.fit(X_train,y_train)
testing_scores.append(regr.score(X_test,y_test))
training_scores.append(regr.score(X_train,y_train))
ax.plot(Ks,testing_scores,label="testing score:weight=%s"%weight)
ax.plot(Ks,training_scores,label="training score:weight=%s"%weight)
ax.legend(loc='best')
ax.set_xlabel("K")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.set_title("KNeighborsRegressor")
plt.show() # 调用 test_KNeighborsRegressor_k_w
test_KNeighborsRegressor_k_w(X_train,X_test,y_train,y_test)
def test_KNeighborsRegressor_k_p(*data):
'''
测试 KNeighborsRegressor 中 n_neighbors 和 p 参数的影响
'''
X_train,X_test,y_train,y_test=data
Ks=np.linspace(1,y_train.size,endpoint=False,dtype='int')
Ps=[1,2,10] fig=plt.figure()
ax=fig.add_subplot(1,1,1)
### 绘制不同 p 下, 预测得分随 n_neighbors 的曲线
for P in Ps:
training_scores=[]
testing_scores=[]
for K in Ks:
regr=neighbors.KNeighborsRegressor(p=P,n_neighbors=K)
regr.fit(X_train,y_train)
testing_scores.append(regr.score(X_test,y_test))
training_scores.append(regr.score(X_train,y_train))
ax.plot(Ks,testing_scores,label="testing score:p=%d"%P)
ax.plot(Ks,training_scores,label="training score:p=%d"%P)
ax.legend(loc='best')
ax.set_xlabel("K")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.set_title("KNeighborsRegressor")
plt.show() # 调用 test_KNeighborsRegressor_k_p
test_KNeighborsRegressor_k_p(X_train,X_test,y_train,y_test)
吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型的更多相关文章
- 吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——半监督学习LabelSpreading模型
import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...
- 吴裕雄 python 机器学习——支持向量机线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——逻辑回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——ElasticNet回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——Lasso回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄 python 机器学习——岭回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
随机推荐
- 洛谷P5534 【XR-3】等差数列 耻辱!!!
题目描述 小 X 给了你一个等差数列的前两项以及项数,请你求出这个等差数列各项之和. 等差数列:对于一个 nnn 项数列 aaa,如果满足对于任意 i∈[1,n)i \in [1,n)i∈[1,n), ...
- 前端Yslow的23个优化原则
前端Yslow的23个优化原则 最常遇见的前端优化问题. Yslow是雅虎开发的基于网页性能分析浏览器插件,可以检测出网页的具体性能值,并且有著名的Yslow 23条优化规则,这23条,就够我们玩的了 ...
- js集合
var list = {};//声明 List[0] = 52;//赋值 List[1] = 57;//赋值
- VMware该虚拟机似乎正在使用中。如果该虚拟机未在使用,请按“获取所有权(T)”按钮获取它的所有权
原文链接:https://blog.csdn.net/helloxiaozhe/article/details/81176684 VMware该虚拟机似乎正在使用中.如果该虚拟机未在使用,请按“获取所 ...
- vue 项目初始化
初始化 vue init webpack-simple myproject 安裝 npm install 运行 npm run dev 访问地址 http://localhost:8080/ 安装we ...
- 1.spring异常:Caused by: java.lang.NoClassDefFoundError: org/aopalliance/intercept/MethodInterceptor
org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'org.springfr ...
- PHP程序员应该如何提升
PHP程序员应该如何提升 尤其不认可W3school之类的东西,不够深度,理解不深,比起这个更建议看官方文档,中文不清楚,看英文的. 入门视频:入门视频推荐:哈佛大学公开课:构建动态网站Beginne ...
- go语言 实现哈希算法
验证结果网址 http://www.fileformat.info/tool/hash.htm "golang.org/x/crypto/md4"不存在时,解决方法: cd $GO ...
- memcached和redis对比
关于memcached和redis的使用场景,总结如下:两者对比: redis提供数据持久化功能,memcached无持久化. redis的数据结构比memcached要丰富,能完成场景以外的事情: ...
- python3练习100题——019
原题链接:http://www.runoob.com/python/python-exercise-example19.html 题目:一个数如果恰好等于它的因子之和,这个数就称为"完数&q ...