吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import neighbors, datasets
from sklearn.model_selection import train_test_split def create_regression_data(n):
'''
创建回归模型使用的数据集
'''
X =5 * np.random.rand(n, 1)
y = np.sin(X).ravel()
# 每隔 5 个样本就在样本的值上添加噪音
y[::5] += 1 * (0.5 - np.random.rand(int(n/5)))
# 进行简单拆分,测试集大小占 1/4
return train_test_split(X, y,test_size=0.25,random_state=0) #KNN回归KNeighborsRegressor模型
def test_KNeighborsRegressor(*data):
X_train,X_test,y_train,y_test=data
regr=neighbors.KNeighborsRegressor()
regr.fit(X_train,y_train)
print("Training Score:%f"%regr.score(X_train,y_train))
print("Testing Score:%f"%regr.score(X_test,y_test)) #获取回归模型的数据集
X_train,X_test,y_train,y_test=create_regression_data(1000)
# 调用 test_KNeighborsRegressor
test_KNeighborsRegressor(X_train,X_test,y_train,y_test)

def test_KNeighborsRegressor_k_w(*data):
'''
测试 KNeighborsRegressor 中 n_neighbors 和 weights 参数的影响
'''
X_train,X_test,y_train,y_test=data
Ks=np.linspace(1,y_train.size,num=100,endpoint=False,dtype='int')
weights=['uniform','distance'] fig=plt.figure()
ax=fig.add_subplot(1,1,1)
### 绘制不同 weights 下, 预测得分随 n_neighbors 的曲线
for weight in weights:
training_scores=[]
testing_scores=[]
for K in Ks:
regr=neighbors.KNeighborsRegressor(weights=weight,n_neighbors=K)
regr.fit(X_train,y_train)
testing_scores.append(regr.score(X_test,y_test))
training_scores.append(regr.score(X_train,y_train))
ax.plot(Ks,testing_scores,label="testing score:weight=%s"%weight)
ax.plot(Ks,training_scores,label="training score:weight=%s"%weight)
ax.legend(loc='best')
ax.set_xlabel("K")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.set_title("KNeighborsRegressor")
plt.show() # 调用 test_KNeighborsRegressor_k_w
test_KNeighborsRegressor_k_w(X_train,X_test,y_train,y_test)

def test_KNeighborsRegressor_k_p(*data):
'''
测试 KNeighborsRegressor 中 n_neighbors 和 p 参数的影响
'''
X_train,X_test,y_train,y_test=data
Ks=np.linspace(1,y_train.size,endpoint=False,dtype='int')
Ps=[1,2,10] fig=plt.figure()
ax=fig.add_subplot(1,1,1)
### 绘制不同 p 下, 预测得分随 n_neighbors 的曲线
for P in Ps:
training_scores=[]
testing_scores=[]
for K in Ks:
regr=neighbors.KNeighborsRegressor(p=P,n_neighbors=K)
regr.fit(X_train,y_train)
testing_scores.append(regr.score(X_test,y_test))
training_scores.append(regr.score(X_train,y_train))
ax.plot(Ks,testing_scores,label="testing score:p=%d"%P)
ax.plot(Ks,training_scores,label="training score:p=%d"%P)
ax.legend(loc='best')
ax.set_xlabel("K")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.set_title("KNeighborsRegressor")
plt.show() # 调用 test_KNeighborsRegressor_k_p
test_KNeighborsRegressor_k_p(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型的更多相关文章
- 吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——半监督学习LabelSpreading模型
import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...
- 吴裕雄 python 机器学习——支持向量机线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——逻辑回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——ElasticNet回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄 python 机器学习——Lasso回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄 python 机器学习——岭回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
随机推荐
- windows下安装配置subline+Markdown
安装环境:win10 64bit 1. 安装subline3 subline : http://www.sublimetextcn.com/ 直接下载安装,不用激活(dao版,慎用) 2. 安装Ma ...
- cdn第三方前端依赖架包共享地址
https://cdnjs.com/ 可在此网站查找你需要的稳定第三方前端依赖架包
- [SDOI2013] 直径 - 树形dp
对于给定的一棵树,其直径的长度是多少,以及有多少条边满足所有的直径都经过该边. Solution 有点意思 先随便求一条直径(两次DFS即可),不妨设为 \(s,t\),我们知道要求的这些边一定都在这 ...
- 静态区间第k小 - 整体二分
蒟蒻终于学会整体二分啦! 思路 实现 丑陋无比的代码 #include <bits/stdc++.h> using namespace std; const int N = 200005; ...
- wso2 linux上部署说明
1.启动wso2
- 多个iframe,删除详情页时刷新同级iframe的table list
说明:在使用iframe开发时,经常遇到多个iframe之间的操作. 下面就是一个需求:在一个iframe中关闭时,刷新指定的iframe: 添加需要刷新的标识reload=true //添加npi2 ...
- redis 列表类型list
列表类型(list)1.插入 左侧插入 :lpush key value1 value2 value3... 右侧插入: lpush key value1 value2 value3... 在指定元素 ...
- js及jsp.java查错的几种方式
一.js 1.console.log("你想输出的内容"); 2.alert("你想输出的内容"); 3.debugger;(记得打开F12) 4.快速找到js ...
- C# LINQ GroupBy
一.先准备要使用的类: 1.Person类: class Person { public string Name { set; get; } public int Age { set; get; } ...
- word doc转pdf
from win32com.client import constants, gencache # TODO pip install pywin32 -i http://mirrors.aliyun. ...