【 HDU 2177 】取(2堆)石子游戏 (威佐夫博弈)
BUPT2017 wintertraining(15) #5C
hdu2177
题意
两个人轮流取石子,可以取一堆的任意非负整数个或两堆取相同个,先取完的输。
给定若干组数据:a,b表示两堆的石子数量,求先手输还是赢,赢还要求第一步之后的两堆石子数,如果有取相同的方案,先输出。
题解
威佐夫博弈问题。
必输的状态(奇异局势):(0,0),(1,2),(3,5),..(a_k,a_k+k)其中a_k是前面未出现过的最小的正整数。
有一些性质:每个正整数在必输状态中出现且仅出现一次。
于是可以计算并存储下必输状态(X,Y),x[k]为第k个必输状态的较小的数,y[i]为必输状态中是较小的数i 对应的较大的数,z[i]为必输状态中较大的数i 对应的较小的数。
先手输的情况就是一开始就是必输态,也就是k=b-a,x[k]==a。
先手赢的情况,是将局面变成必输态:
取走两个相同的数后,差k不变,若a>x[k],则可变成(x[k],y[x[k]])。
只取第一堆:
若b在它所在的必输态中是较大的数(z[b]!=0),且a>z[b],则可变成(z[b],b)。
只取第二堆:
- 第二堆仍更大:若a在必输态中是较小的数(y[a]!=0),且b>y[a],则可变成(a,y[a])。
- 第二堆更小了:若a在必输态中是较大的数,因为b>a>z[a],可以变成(z[a],a)。
这题数据比较水,错误的代码也ac了。按我现在的思路我也不敢说一定是正确的代码。
另外也可以用公式直接求出奇异局势:
$a_k = [k\cdot (1+√5)/2],b_k= a_k + k $
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define N 1000005
using namespace std;
int a,b,vis[N<<1],x[N],y[N],z[N<<1],k;
int main() {
for(int i=1;i<N;i++)
if(!vis[i]){
x[++k]=i;y[i]=i+k;z[i+k]=i;
vis[i]=vis[y[i]]=1;
}
while(scanf("%d%d",&a,&b),a||b){
if(x[b-a]==a)
puts("0");
else{
puts("1");
if(a>x[b-a]) printf("%d %d\n",x[b-a],y[x[b-a]]);
if(z[b]&&a>z[b]) printf("%d %d\n",z[b],b);
if(y[a]&&b>y[a]) printf("%d %d\n",a,y[a]);
if(z[a])printf("%d %d\n",z[a],a);
}
}
return 0;
}
【 HDU 2177 】取(2堆)石子游戏 (威佐夫博弈)的更多相关文章
- HDU2177:取(2堆)石子游戏(威佐夫博弈)
Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同 ...
- HDU 2177 取(2堆)石子游戏
取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- HDU 2176:取(m堆)石子游戏(Nim博弈)
取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- HDU 2177 取(2堆)石子游戏 (威佐夫博弈)
题目思路:威佐夫博弈: 当当前局面[a,b]为奇异局时直接输出0 否则: 1.若a==b,输出(0 0): 2.将a,b不停减一,看能否得到奇异局,若有则输出: 3.由于 ak=q*k(q为黄金分割数 ...
- HDU 2117 取(2堆)石子游戏【wzf博弈】
题意:威佐夫博弈原型,除了输出先手能不能胜,还要输出先手的第一手选择. 思路:预处理出1000000以内的所有奇异局势.对于每个自然数,其必然是某一个奇异局势的a或者b.故对于一个非奇异局势,必定有一 ...
- hdu 2177 取(2堆)石子游戏(威佐夫博奕)
题目链接:hdu 2177 这题不是普通的 Nim 博弈,我想它应该是另一种博弈吧,于是便推 sg 函数打了个 20*20 的表来看,为了方便看一些,我用颜色作了标记,打表代码如下: #include ...
- HDU-2177 取(2堆)石子游戏 (威佐夫博奕)
Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同 ...
- hdu 2177 取(2堆)石子游戏 博弈论
由于要输出方案,变得复杂了.数据不是很大,首先打表,所有whthoff 的奇异局势. 然后直接判断是否为必胜局面. 如果必胜,首先判断能否直接同时相减得到.这里不需要遍历或者二分查找.由于两者同时减去 ...
- HDU 2176 取(m堆)石子游戏 —— (Nim博弈)
如果yes的话要输出所有情况,一开始觉得挺难,想了一下也没什么. 每堆的个数^一下,答案不是0就是先取者必胜,那么对必胜态显然至少存在一种可能性使得当前局势变成必败的.只要任意选取一堆,把这堆的数目变 ...
- HDU 2176 取(m堆)石子游戏 尼姆博弈
题目思路: 对于尼姆博弈我们知道:op=a[1]^a[2]--a[n],若op==0先手必败 一个简单的数学公式:若op=a^b 那么:op^b=a: 对于第i堆a[i],op^a[i]的值代表其余各 ...
随机推荐
- Python入门-文件操作
文件读取f = open('D:/工作日常/学生空姐模特护士联系方式.txt', 'r', encoding=‘utf-8’)f.read()f.close()解释file='D:/工作日常/学生空姐 ...
- XML 与 JSON大PK
导读 XML 和 JSON 是现今互联网中最常用的两种数据交换格式.XML 格式由 W3C 于 1996 年提出.JSON 格式由 Douglas Crockford 于 2002 年提出.虽然这两种 ...
- R语言
什么是R语言编程? R语言是一种用于统计分析和为此目的创建图形的编程语言.不是数据类型,它具有用于计算的数据对象.它用于数据挖掘,回归分析,概率估计等领域,使用其中可用的许多软件包. R语言中的不同数 ...
- 异常:fatal: unable to access 'https://git.oschina.net/pcmpcs/library.git/': Could not resolve host
git fork项目时出现的异常. 原因: 我以前用的是ssh地址做的远程通信地址,而这次是用的是https,因为很久没用,所以忘记了以前是用ssh的了.解决方案一:复制ssh协议的地址,然后再关联 ...
- 【Python3练习题 016】 猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不瘾,又多吃了一个。第二天早上又将剩下的桃子吃掉一半,又多吃了一个。以后每天早上都吃了前一天剩下的一半零一个。到第10天早上想再吃时,见只剩下一个桃子了。求第一天共摘了多少。
这题得倒着推.第10天还没吃,就剩1个,说明第9天吃完一半再吃1个还剩1个,假设第9天还没吃之前有桃子p个,可得:p * 1/2 - 1 = 1,可得 p = 4.以此类推,即可手算出. 代码思路为: ...
- IdentityServer4【QuickStart】之利用OpenID Connect添加用户认证
利用OpenID Connect添加用户认证 利用OpenID Connect添加用户认证 在这个示例中我们想要通过OpenID Connect协议将交互用户添加到我们的IdentityServer上 ...
- Java Hash集合的equals()与hashCode() 方法
Java 集合实现类,无论是HashSet.HashMap等所有的Hash算法实现的集合类(后面简称Hash集合),加入的对象必须实现 hashCode() 与 equals() 方法,稍微不同的地方 ...
- mybatis源码分析(二)------------配置文件的解析
这篇文章中,我们将讲解配置文件中 properties,typeAliases,settings和environments这些节点的解析过程. 一 properties的解析 private void ...
- C# Note30: 网络爬虫
用C#实现网络爬虫(一) 用C#实现网络爬虫(二) 基于C#.NET的高端智能化网络爬虫(一)(反爬虫哥必看) 基于C#.NET的高端智能化网络爬虫(二)(攻破携程网) C#获取网页内容的三种方式
- 集合之HashSet(含JDK1.8源码分析)
一.前言 我们已经分析了List接口下的ArrayList和LinkedList,以及Map接口下的HashMap.LinkedHashMap.TreeMap,接下来看的是Set接口下HashSet和 ...