BUPT2017 wintertraining(15) #5C

hdu2177

题意

两个人轮流取石子,可以取一堆的任意非负整数个或两堆取相同个,先取完的输。

给定若干组数据:a,b表示两堆的石子数量,求先手输还是赢,赢还要求第一步之后的两堆石子数,如果有取相同的方案,先输出。

题解

威佐夫博弈问题。

必输的状态(奇异局势):(0,0),(1,2),(3,5),..(a_k,a_k+k)其中a_k是前面未出现过的最小的正整数。

有一些性质:每个正整数在必输状态中出现且仅出现一次。

于是可以计算并存储下必输状态(X,Y),x[k]为第k个必输状态的较小的数,y[i]为必输状态中是较小的数i 对应的较大的数,z[i]为必输状态中较大的数i 对应的较小的数。

先手输的情况就是一开始就是必输态,也就是k=b-a,x[k]==a。

先手赢的情况,是将局面变成必输态:

取走两个相同的数后,差k不变,若a>x[k],则可变成(x[k],y[x[k]])。

只取第一堆:

若b在它所在的必输态中是较大的数(z[b]!=0),且a>z[b],则可变成(z[b],b)。

只取第二堆:

  1. 第二堆仍更大:若a在必输态中是较小的数(y[a]!=0),且b>y[a],则可变成(a,y[a])。
  2. 第二堆更小了:若a在必输态中是较大的数,因为b>a>z[a],可以变成(z[a],a)。

这题数据比较水,错误的代码也ac了。按我现在的思路我也不敢说一定是正确的代码。

另外也可以用公式直接求出奇异局势:

$a_k = [k\cdot (1+√5)/2],b_k= a_k + k $

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define N 1000005
using namespace std;
int a,b,vis[N<<1],x[N],y[N],z[N<<1],k;
int main() {
for(int i=1;i<N;i++)
if(!vis[i]){
x[++k]=i;y[i]=i+k;z[i+k]=i;
vis[i]=vis[y[i]]=1;
}
while(scanf("%d%d",&a,&b),a||b){
if(x[b-a]==a)
puts("0");
else{
puts("1");
if(a>x[b-a]) printf("%d %d\n",x[b-a],y[x[b-a]]);
if(z[b]&&a>z[b]) printf("%d %d\n",z[b],b);
if(y[a]&&b>y[a]) printf("%d %d\n",a,y[a]);
if(z[a])printf("%d %d\n",z[a],a);
}
}
return 0;
}

【 HDU 2177 】取(2堆)石子游戏 (威佐夫博弈)的更多相关文章

  1. HDU2177:取(2堆)石子游戏(威佐夫博弈)

    Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同 ...

  2. HDU 2177 取(2堆)石子游戏

    取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. HDU 2176:取(m堆)石子游戏(Nim博弈)

    取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  4. HDU 2177 取(2堆)石子游戏 (威佐夫博弈)

    题目思路:威佐夫博弈: 当当前局面[a,b]为奇异局时直接输出0 否则: 1.若a==b,输出(0 0): 2.将a,b不停减一,看能否得到奇异局,若有则输出: 3.由于 ak=q*k(q为黄金分割数 ...

  5. HDU 2117 取(2堆)石子游戏【wzf博弈】

    题意:威佐夫博弈原型,除了输出先手能不能胜,还要输出先手的第一手选择. 思路:预处理出1000000以内的所有奇异局势.对于每个自然数,其必然是某一个奇异局势的a或者b.故对于一个非奇异局势,必定有一 ...

  6. hdu 2177 取(2堆)石子游戏(威佐夫博奕)

    题目链接:hdu 2177 这题不是普通的 Nim 博弈,我想它应该是另一种博弈吧,于是便推 sg 函数打了个 20*20 的表来看,为了方便看一些,我用颜色作了标记,打表代码如下: #include ...

  7. HDU-2177 取(2堆)石子游戏 (威佐夫博奕)

    Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同 ...

  8. hdu 2177 取(2堆)石子游戏 博弈论

    由于要输出方案,变得复杂了.数据不是很大,首先打表,所有whthoff 的奇异局势. 然后直接判断是否为必胜局面. 如果必胜,首先判断能否直接同时相减得到.这里不需要遍历或者二分查找.由于两者同时减去 ...

  9. HDU 2176 取(m堆)石子游戏 —— (Nim博弈)

    如果yes的话要输出所有情况,一开始觉得挺难,想了一下也没什么. 每堆的个数^一下,答案不是0就是先取者必胜,那么对必胜态显然至少存在一种可能性使得当前局势变成必败的.只要任意选取一堆,把这堆的数目变 ...

  10. HDU 2176 取(m堆)石子游戏 尼姆博弈

    题目思路: 对于尼姆博弈我们知道:op=a[1]^a[2]--a[n],若op==0先手必败 一个简单的数学公式:若op=a^b 那么:op^b=a: 对于第i堆a[i],op^a[i]的值代表其余各 ...

随机推荐

  1. 第十二届湖南省赛 A - 2016 ( 数学,同余转换)

    给出正整数 n 和 m,统计满足以下条件的正整数对 (a,b) 的数量:       1. 1≤a≤n,1≤b≤m;   2. a×b 是 2016 的倍数.   Input   输入包含不超过 30 ...

  2. stark组件之pop页面,按钮,url,页面

      1.Window open() 方法 2.admin的pop添加按钮 3.stark之pop功能 3.知识点总结 4.coding代码 1.Window open() 方法 效果图   2.adm ...

  3. LZO

    LZO 是致力于解压速度的一种数据压缩算法,LZO 是 Lempel-Ziv-Oberhumer 的缩写.这个算法是无损算法,参考实现程序是线程安全的. 实现它的一个自由软件工具是lzop.最初的库是 ...

  4. marMariaDB & MYSQL flexviews

    Using Flexviews - part one, introduction to materialized views - Percona Database Performance Bloght ...

  5. MySQL的binlog及关闭方法

    如何关闭MySQL日志,删除mysql-bin.0000*日志文件 - VPS侦探https://www.vpser.net/manage/delete-mysql-mysql-bin-0000-lo ...

  6. Column 'parent_id' specified twice

    Hibernate Column 'parent_id' specified twice问题解决--insertable = false, updatable = false的使用 - shendeg ...

  7. Linux的LiveCd与CD、DVD版

    https://blog.csdn.net/sun_168/article/details/6744401

  8. python基础之数据类型和数值类型

    python3的六大数据类型: 1.tuple元组 2.number数字 3.string字符串 4.set集合 5.list列表 6.dictionary字典 其中不可变数据3个:tuple.num ...

  9. java 获取下一个字母(传大写返回大写,传小写返回小写)

    public static String getNextUpEn(String en){ char lastE = 'a'; char st = en.toCharArray()[0]; if(Cha ...

  10. IdentityServer4【Topic】之保护APIs

    Protecting APIs 保护api 默认情况下IdentityServer将access token发布成JWT(json web token)格式的. 现在,每个相关的平台都支持验证JWT令 ...