题目传送门

Strange Towers of Hanoi

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 3117   Accepted: 2004

Description

Background 
Charlie Darkbrown sits in another one of those boring Computer Science lessons: At the moment the teacher just explains the standard Tower of Hanoi problem, which bores Charlie to death! 

The teacher points to the blackboard (Fig. 4) and says: "So here is the problem:

  • There are three towers: A, B and C.
  • There are n disks. The number n is constant while working the puzzle.
  • All disks are different in size.
  • The disks are initially stacked on tower A increasing in size from the top to the bottom.
  • The goal of the puzzle is to transfer all of the disks from tower A to tower C.
  • One disk at a time can be moved from the top of a tower either to an empty tower or to a tower with a larger disk on the top.

So your task is to write a program that calculates the smallest number of disk moves necessary to move all the disks from tower A to C." 
Charlie: "This is incredibly boring—everybody knows that this can be solved using a simple recursion.I deny to code something as simple as this!" 
The teacher sighs: "Well, Charlie, let's think about something for you to do: For you there is a fourth tower D. Calculate the smallest number of disk moves to move all the disks from tower A to tower D using all four towers." 
Charlie looks irritated: "Urgh. . . Well, I don't know an optimal algorithm for four towers. . . " 
Problem 
So the real problem is that problem solving does not belong to the things Charlie is good at. Actually, the only thing Charlie is really good at is "sitting next to someone who can do the job". And now guess what — exactly! It is you who is sitting next to Charlie, and he is already glaring at you. 
Luckily, you know that the following algorithm works for n <= 12: At first k >= 1 disks on tower A are fixed and the remaining n-k disks are moved from tower A to tower B using the algorithm for four towers.Then the remaining k disks from tower A are moved to tower D using the algorithm for three towers. At last the n - k disks from tower B are moved to tower D again using the algorithm for four towers (and thereby not moving any of the k disks already on tower D). Do this for all k 2 ∈{1, .... , n} and find the k with the minimal number of moves. 
So for n = 3 and k = 2 you would first move 1 (3-2) disk from tower A to tower B using the algorithm for four towers (one move). Then you would move the remaining two disks from tower A to tower D using the algorithm for three towers (three moves). And the last step would be to move the disk from tower B to tower D using again the algorithm for four towers (another move). Thus the solution for n = 3 and k = 2 is 5 moves. To be sure that this really is the best solution for n = 3 you need to check the other possible values 1 and 3 for k. (But, by the way, 5 is optimal. . . )

Input

There is no input.

Output

For each n (1 <= n <= 12) print a single line containing the minimum number of moves to solve the problem for four towers and n disks.

Sample Input

No input.

Sample Output

REFER TO OUTPUT.


  分析:题目大意就是要求你解出n个盘子4座塔的Hanoi问题的最少步数,不需要输入,直接输出n为1-12的所有答案即可。我们知道,一般的三塔Hanoi问题的递推式是d[i]=d[i-1]*2+1,意思就是先将i-1个盘子放在第二个塔上,再把最后一个放在第三个塔上,再将i-1个盘子放在第三个塔上(如果这个不知道就自己去玩一下Hanoi),当然这种方法实质上是将i个盘子的问题先转化为i-1个盘子的问题。那么做这题就可以用类似的思维,先将i个盘子的四塔问题转化为j个盘子的三塔问题(0<=j<=i),令f[i]为i个盘子的四塔问题的答案,则f[i]=min(f[i],f[j]*2+d[i-j])。实际上也就等效于先做j个盘子的四塔问题,再做i-j个盘子的三塔问题,再做一次j个盘子的四塔问题。那么答案就很容易了。

  Code:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<iomanip>
#include<algorithm>
#define Fi(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
int d[],f[];
int main()
{
Fi(i,,)d[i]=d[i-]*+;memset(f,0x3f3f3f3f,sizeof(f));
f[]=;Fi(i,,)Fi(j,,i)f[i]=min(f[i],*f[j]+d[i-j]);
Fi(i,,)cout<<f[i]<<endl;return ;
}

POJ1958 Strange Towers of Hanoi [递推]的更多相关文章

  1. POJ-1958 Strange Towers of Hanoi(线性动规)

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...

  2. poj1958——Strange Towers of Hanoi

    The teacher points to the blackboard (Fig. 4) and says: "So here is the problem: There are thre ...

  3. poj1958 strange towers of hanoi

    说是递推,其实也算是个DP吧. 就是4塔的汉诺塔问题. 考虑三塔:先从a挪n-1个到b,把最大的挪到c,然后再把n-1个从b挪到c,所以是 f[i] = 2 * f[i-1] + 1; 那么4塔类似: ...

  4. POJ 1958 Strange Towers of Hanoi 解题报告

    Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...

  5. POJ 1958 Strange Towers of Hanoi

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3784 Accepted: 23 ...

  6. Strange Towers of Hanoi POJ - 1958(递推)

    题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12) 那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到 ...

  7. POJ1958:Strange Towers of Hanoi

    我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:http://poj.org/problem?id=1958 题目要我们求四柱 ...

  8. [POJ1958][Strange Tower of Hanoi]

    题目描述 求解 \(n\) 个盘子 \(4\) 座塔的 Hanoi 问题最少需要多少步 问题分析 考虑 \(3\) 座塔的 Hanoi 问题,记 \(f[i]\) 表示最少需要多少步, 则 \(f[i ...

  9. Strange Towers of Hanoi

    题目链接:http://sfxb.openjudge.cn/dongtaiguihua/E/ 题目描述:4个柱子的汉诺塔,求盘子个数n从1到12时,从A移到D所需的最大次数.限制条件和三个柱子的汉诺塔 ...

随机推荐

  1. 【Android】Android之Copy and Paste

    Android为复制粘贴提供了一个强大的基于剪切板的框架,它支持简单和复杂的数据类型,包括纯文本,复杂的数据结构,二进制流,甚至app资源文件.简单的文本数据直接存储在剪切板中,而复杂的数据则存储的是 ...

  2. mysql 索引 和mysql 的引擎

    1.索引的特点 索引是一种特殊的文件(InnoDB数据表上的索引是表空间的一个组成部分),它们包含着对数据表里所有记录的引用指针.更通俗的说,数据库索引好比是一本书前面的目录,能加快数据库的查询速度. ...

  3. .Net MVC4 上传大文件,并保存表单

    1. 前台 cshtml </pre><pre name="code" class="csharp">@model BLL.BLL.Pr ...

  4. linux启动过程——(三)

  5. 探索ReactNative应用

    本篇文章是我看AC2016腾讯前端技术交流大会后写的.写的不好,大家见谅啊. 一,什么是ReactNative? 简单来说就是可以用javascript来写APP了,而且性能还不错. 用JS写的话已经 ...

  6. 【Python学习】程序运行完发送邮件提醒

    有时候我们运行一个需要跑很长时间的程序,不管是在云主机还是本地主机上运行,我们都不可能一直守在电脑面前等.所以想到使用邮件来通知提醒. 示例代码如下 # -*- coding: utf-8 -*- # ...

  7. STM32 volatile关键字

    为了提供对特殊地址的稳定访问. [C] 纯文本查看 复制代码 ? 1 2 3 int i=10; int j=i;     //1 int k=i;    //2 此时编译器对上面代码进行优化,因为在 ...

  8. sicily 4699. 简单哈希

    Description 使用线性探测法(Linear Probing)可以解决哈希中的冲突问题,其基本思想是:设哈希函数为h(key) = d, 并且假定哈希的存储结构是循环数组, 则当冲突发生时,  ...

  9. 利用python对WiderFace数据解析及画框

    #注:此代码稍作修改也可以用于WFLW人脸数据集的标注文件解析,#参见其README.md文件了解其每一行的信息,从中解析出相应字#段即可. import os import cv2 def draw ...

  10. python爬虫实战——5分钟做个图片自动下载器

      python爬虫实战——图片自动下载器 制作爬虫的基本步骤 顺便通过这个小例子,可以掌握一些有关制作爬虫的基本的步骤. 一般来说,制作一个爬虫需要分以下几个步骤: 分析需求(对,需求分析非常重要, ...