POJ1958 Strange Towers of Hanoi [递推]
Strange Towers of Hanoi
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 3117 | Accepted: 2004 |
Description
Charlie Darkbrown sits in another one of those boring Computer Science lessons: At the moment the teacher just explains the standard Tower of Hanoi problem, which bores Charlie to death!

The teacher points to the blackboard (Fig. 4) and says: "So here is the problem:
- There are three towers: A, B and C.
- There are n disks. The number n is constant while working the puzzle.
- All disks are different in size.
- The disks are initially stacked on tower A increasing in size from the top to the bottom.
- The goal of the puzzle is to transfer all of the disks from tower A to tower C.
- One disk at a time can be moved from the top of a tower either to an empty tower or to a tower with a larger disk on the top.
So your task is to write a program that calculates the smallest number of disk moves necessary to move all the disks from tower A to C."
Charlie: "This is incredibly boring—everybody knows that this can be solved using a simple recursion.I deny to code something as simple as this!"
The teacher sighs: "Well, Charlie, let's think about something for you to do: For you there is a fourth tower D. Calculate the smallest number of disk moves to move all the disks from tower A to tower D using all four towers."
Charlie looks irritated: "Urgh. . . Well, I don't know an optimal algorithm for four towers. . . "
Problem
So the real problem is that problem solving does not belong to the things Charlie is good at. Actually, the only thing Charlie is really good at is "sitting next to someone who can do the job". And now guess what — exactly! It is you who is sitting next to Charlie, and he is already glaring at you.
Luckily, you know that the following algorithm works for n <= 12: At first k >= 1 disks on tower A are fixed and the remaining n-k disks are moved from tower A to tower B using the algorithm for four towers.Then the remaining k disks from tower A are moved to tower D using the algorithm for three towers. At last the n - k disks from tower B are moved to tower D again using the algorithm for four towers (and thereby not moving any of the k disks already on tower D). Do this for all k 2 ∈{1, .... , n} and find the k with the minimal number of moves.
So for n = 3 and k = 2 you would first move 1 (3-2) disk from tower A to tower B using the algorithm for four towers (one move). Then you would move the remaining two disks from tower A to tower D using the algorithm for three towers (three moves). And the last step would be to move the disk from tower B to tower D using again the algorithm for four towers (another move). Thus the solution for n = 3 and k = 2 is 5 moves. To be sure that this really is the best solution for n = 3 you need to check the other possible values 1 and 3 for k. (But, by the way, 5 is optimal. . . )
Input
Output
Sample Input
No input.
Sample Output
REFER TO OUTPUT.
分析:题目大意就是要求你解出n个盘子4座塔的Hanoi问题的最少步数,不需要输入,直接输出n为1-12的所有答案即可。我们知道,一般的三塔Hanoi问题的递推式是d[i]=d[i-1]*2+1,意思就是先将i-1个盘子放在第二个塔上,再把最后一个放在第三个塔上,再将i-1个盘子放在第三个塔上(如果这个不知道就自己去玩一下Hanoi),当然这种方法实质上是将i个盘子的问题先转化为i-1个盘子的问题。那么做这题就可以用类似的思维,先将i个盘子的四塔问题转化为j个盘子的三塔问题(0<=j<=i),令f[i]为i个盘子的四塔问题的答案,则f[i]=min(f[i],f[j]*2+d[i-j])。实际上也就等效于先做j个盘子的四塔问题,再做i-j个盘子的三塔问题,再做一次j个盘子的四塔问题。那么答案就很容易了。
Code:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<iomanip>
#include<algorithm>
#define Fi(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
int d[],f[];
int main()
{
Fi(i,,)d[i]=d[i-]*+;memset(f,0x3f3f3f3f,sizeof(f));
f[]=;Fi(i,,)Fi(j,,i)f[i]=min(f[i],*f[j]+d[i-j]);
Fi(i,,)cout<<f[i]<<endl;return ;
}
POJ1958 Strange Towers of Hanoi [递推]的更多相关文章
- POJ-1958 Strange Towers of Hanoi(线性动规)
Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...
- poj1958——Strange Towers of Hanoi
The teacher points to the blackboard (Fig. 4) and says: "So here is the problem: There are thre ...
- poj1958 strange towers of hanoi
说是递推,其实也算是个DP吧. 就是4塔的汉诺塔问题. 考虑三塔:先从a挪n-1个到b,把最大的挪到c,然后再把n-1个从b挪到c,所以是 f[i] = 2 * f[i-1] + 1; 那么4塔类似: ...
- POJ 1958 Strange Towers of Hanoi 解题报告
Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...
- POJ 1958 Strange Towers of Hanoi
Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3784 Accepted: 23 ...
- Strange Towers of Hanoi POJ - 1958(递推)
题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12) 那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到 ...
- POJ1958:Strange Towers of Hanoi
我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:http://poj.org/problem?id=1958 题目要我们求四柱 ...
- [POJ1958][Strange Tower of Hanoi]
题目描述 求解 \(n\) 个盘子 \(4\) 座塔的 Hanoi 问题最少需要多少步 问题分析 考虑 \(3\) 座塔的 Hanoi 问题,记 \(f[i]\) 表示最少需要多少步, 则 \(f[i ...
- Strange Towers of Hanoi
题目链接:http://sfxb.openjudge.cn/dongtaiguihua/E/ 题目描述:4个柱子的汉诺塔,求盘子个数n从1到12时,从A移到D所需的最大次数.限制条件和三个柱子的汉诺塔 ...
随机推荐
- bzoj 2038 莫队入门
http://www.lydsy.com/JudgeOnline/problem.php?id=2038 题意:多次询问区间内取出两个相同颜色的种类数 思路:由于不是在线更新,那么可以进行离线查询,而 ...
- LightOJ 1097 - Lucky Number 线段树
http://www.lightoj.com/volume_showproblem.php?problem=1097 题意:一个自然数序列,先去掉所有偶数项,在此基础上的序列的第二项为3,则删去所有3 ...
- PHP扩展--Oracle客户端(oci8)安装
下载Oracle客户端 官方下载地址: Linux X86-64 同意协议,下载以下文件: oracle-instantclient11.2-basic-11.2.0.4.0-1.x86_64.rpm ...
- 解决SpringSecurity限制iframe引用页面的问题
使用Spring Security的过程中,需要使用iframe来引入其他域的页面,页面会报X-Frame-Options的错误,试了好几种方法一直未能很好的解决这个问题. 这里涉及到Spring S ...
- rdlc 格式设置
在用vs2013开发rdlc报表时,发现好多报表样式问题: 1.导出的pdf偶数页总是空白页. 2.导出的Excel打印时,内容显示不全. 3.word内容显示不全. 查了好多资料终于找到解决方案了, ...
- 【NOIP】提高组2015 子串
[题意]求从字符串A中取出k个互不重叠的非空子串顺序拼接形成B的方案数.n<=1000,m<=100,k<=m. [算法]动态规划 [题解]这题主要是将从i-l转移变成从i-1转移, ...
- 树莓派开启smb
1.安装smb apt-get install samba samba-common-bin 2.修改/etc/samba/smb.conf配置 设置使用系统用户登入 增加smb访问文件夹 [shar ...
- barrier 和 preempt_disable() 学习【转】
#define preempt_disable() \ do{ \ inc_preempt_count(); \ barrier(); \ }while(0) 一.这个barrier 在干什么. ...
- Python 如何将字符串转为字典
在工作中遇到一个小问题,需要将一个 python 的字符串转为字典,比如字符串: user_info = '{"name" : "john", "ge ...
- python windows下安装celery调度任务时出错
由于celery 4.0不支持windows系统.所以用命令pip install Celery安装的celery是最新版4.0的不能在windows下运行. 在windows命令窗口运行: cele ...