import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as pl
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
data = pd.read_csv('F:\\kaggleDataSet\\MedicalCostPersonal\\insurance.csv')
data.head()

data.isnull().sum()

from sklearn.preprocessing import LabelEncoder
#sex
le = LabelEncoder()
le.fit(data.sex.drop_duplicates())
data.sex = le.transform(data.sex)
# smoker or not
le.fit(data.smoker.drop_duplicates())
data.smoker = le.transform(data.smoker)
#region
le.fit(data.region.drop_duplicates())
data.region = le.transform(data.region)
data.corr()['charges'].sort_values()

f, ax = pl.subplots(figsize=(10, 8))
corr = data.corr()
sns.heatmap(corr, mask=np.zeros_like(corr, dtype=np.bool), cmap=sns.diverging_palette(240,10,as_cmap=True),square=True, ax=ax)

from bokeh.io import output_notebook, show
from bokeh.plotting import figure
output_notebook()
import scipy.special
from bokeh.layouts import gridplot
from bokeh.plotting import figure, show, output_file
p = figure(title="Distribution of charges",tools="save",background_fill_color="#E8DDCB")
hist, edges = np.histogram(data.charges)
p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],fill_color="#036564", line_color="#033649")
p.xaxis.axis_label = 'x'
p.yaxis.axis_label = 'Pr(x)'
show(gridplot(p,ncols = 2, plot_width=400, plot_height=400, toolbar_location=None))

f= pl.figure(figsize=(12,5))

ax=f.add_subplot(121)
sns.distplot(data[(data.smoker == 1)]["charges"],color='c',ax=ax)
ax.set_title('Distribution of charges for smokers') ax=f.add_subplot(122)
sns.distplot(data[(data.smoker == 0)]['charges'],color='b',ax=ax)
ax.set_title('Distribution of charges for non-smokers')

sns.catplot(x="smoker", kind="count",hue = 'sex', palette="pink", data=data)

sns.catplot(x="sex", y="charges", hue="smoker",kind="violin", data=data, palette = 'magma')

pl.figure(figsize=(12,5))
pl.title("Box plot for charges of women")
sns.boxplot(y="smoker", x="charges", data = data[(data.sex == 1)] , orient="h", palette = 'magma')

pl.figure(figsize=(12,5))
pl.title("Box plot for charges of men")
sns.boxplot(y="smoker", x="charges", data = data[(data.sex == 0)] , orient="h", palette = 'rainbow')

pl.figure(figsize=(12,5))
pl.title("Distribution of age")
ax = sns.distplot(data["age"], color = 'g')

sns.catplot(x="smoker", kind="count",hue = 'sex', palette="rainbow", data=data[(data.age == 18)])
pl.title("The number of smokers and non-smokers (18 years old)")

g = sns.jointplot(x="age", y="charges", data = data[(data.smoker == 0)],kind="kde", color="m")
g.plot_joint(pl.scatter, c="w", s=30, linewidth=1, marker="+")
g.ax_joint.collections[0].set_alpha(0)
g.set_axis_labels("$X$", "$Y$")
ax.set_title('Distribution of charges and age for non-smokers')

g = sns.jointplot(x="age", y="charges", data = data[(data.smoker == 1)],kind="kde", color="c")
g.plot_joint(pl.scatter, c="w", s=30, linewidth=1, marker="+")
g.ax_joint.collections[0].set_alpha(0)
g.set_axis_labels("$X$", "$Y$")
ax.set_title('Distribution of charges and age for smokers')

#non - smokers
p = figure(plot_width=500, plot_height=450)
p.circle(x=data[(data.smoker == 0)].age,y=data[(data.smoker == 0)].charges, size=7, line_color="navy", fill_color="pink", fill_alpha=0.9) show(p)

#smokers
p = figure(plot_width=500, plot_height=450)
p.circle(x=data[(data.smoker == 1)].age,y=data[(data.smoker == 1)].charges, size=7, line_color="navy", fill_color="red", fill_alpha=0.9)
show(p)

sns.lmplot(x="age", y="charges", hue="smoker", data=data, palette = 'inferno_r', size = 7)
ax.set_title('Smokers and non-smokers')

pl.figure(figsize=(12,5))
pl.title("Distribution of bmi")
ax = sns.distplot(data["bmi"], color = 'm')

pl.figure(figsize=(12,5))
pl.title("Distribution of charges for patients with BMI greater than 30")
ax = sns.distplot(data[(data.bmi >= 30)]['charges'], color = 'm')

pl.figure(figsize=(12,5))
pl.title("Distribution of charges for patients with BMI less than 30")
ax = sns.distplot(data[(data.bmi < 30)]['charges'], color = 'b')

g = sns.jointplot(x="bmi", y="charges", data = data,kind="kde", color="r")
g.plot_joint(pl.scatter, c="w", s=30, linewidth=1, marker="+")
g.ax_joint.collections[0].set_alpha(0)
g.set_axis_labels("$X$", "$Y$")
ax.set_title('Distribution of bmi and charges')

pl.figure(figsize=(10,6))
ax = sns.scatterplot(x='bmi',y='charges',data=data,palette='magma',hue='smoker')
ax.set_title('Scatter plot of charges and bmi') sns.lmplot(x="bmi", y="charges", hue="smoker", data=data, palette = 'magma', size = 8)

sns.catplot(x="children", kind="count", palette="ch:.25", data=data, size = 6)

sns.catplot(x="smoker", kind="count", palette="rainbow",hue = "sex",
data=data[(data.children > 0)], size = 6)
ax.set_title('Smokers and non-smokers who have childrens')

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import r2_score,mean_squared_error
from sklearn.ensemble import RandomForestRegressor
x = data.drop(['charges'], axis = 1)
y = data.charges x_train,x_test,y_train,y_test = train_test_split(x,y, random_state = 0)
lr = LinearRegression().fit(x_train,y_train) y_train_pred = lr.predict(x_train)
y_test_pred = lr.predict(x_test) print(lr.score(x_test,y_test))

X = data.drop(['charges','region'], axis = 1)
Y = data.charges quad = PolynomialFeatures (degree = 2)
x_quad = quad.fit_transform(X) X_train,X_test,Y_train,Y_test = train_test_split(x_quad,Y, random_state = 0) plr = LinearRegression().fit(X_train,Y_train) Y_train_pred = plr.predict(X_train)
Y_test_pred = plr.predict(X_test) print(plr.score(X_test,Y_test))

forest = RandomForestRegressor(n_estimators = 100,criterion = 'mse',random_state = 1,n_jobs = -1)
forest.fit(x_train,y_train)
forest_train_pred = forest.predict(x_train)
forest_test_pred = forest.predict(x_test) print('MSE train data: %.3f, MSE test data: %.3f' % (
mean_squared_error(y_train,forest_train_pred),
mean_squared_error(y_test,forest_test_pred)))
print('R2 train data: %.3f, R2 test data: %.3f' % (
r2_score(y_train,forest_train_pred),
r2_score(y_test,forest_test_pred)))

pl.figure(figsize=(10,6))

pl.scatter(forest_train_pred,forest_train_pred - y_train,c = 'black', marker = 'o', s = 35, alpha = 0.5,label = 'Train data')
pl.scatter(forest_test_pred,forest_test_pred - y_test,c = 'c', marker = 'o', s = 35, alpha = 0.7,label = 'Test data')
pl.xlabel('Predicted values')
pl.ylabel('Tailings')
pl.legend(loc = 'upper left')
pl.hlines(y = 0, xmin = 0, xmax = 60000, lw = 2, color = 'red')
pl.show()

吴裕雄--天生自然 python数据分析:医疗费数据分析的更多相关文章

  1. 吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(完整版)

    # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...

  2. 吴裕雄--天生自然 PYTHON数据分析:所有美国股票和etf的历史日价格和成交量分析

    # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...

  3. 吴裕雄--天生自然 python数据分析:健康指标聚集分析(健康分析)

    # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...

  4. 吴裕雄--天生自然 python数据分析:葡萄酒分析

    # import pandas import pandas as pd # creating a DataFrame pd.DataFrame({'Yes': [50, 31], 'No': [101 ...

  5. 吴裕雄--天生自然 PYTHON数据分析:人类发展报告——HDI, GDI,健康,全球人口数据数据分析

    import pandas as pd # Data analysis import numpy as np #Data analysis import seaborn as sns # Data v ...

  6. 吴裕雄--天生自然 PYTHON语言数据分析:ESA的火星快车操作数据集分析

    import os import numpy as np import pandas as pd from datetime import datetime import matplotlib imp ...

  7. 吴裕雄--天生自然 python语言数据分析:开普勒系外行星搜索结果分析

    import pandas as pd pd.DataFrame({'Yes': [50, 21], 'No': [131, 2]}) pd.DataFrame({'Bob': ['I liked i ...

  8. 吴裕雄--天生自然 PYTHON数据分析:基于Keras的CNN分析太空深处寻找系外行星数据

    #We import libraries for linear algebra, graphs, and evaluation of results import numpy as np import ...

  9. 吴裕雄--天生自然 python数据分析:基于Keras使用CNN神经网络处理手写数据集

    import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mp ...

随机推荐

  1. SpringMVC基础(二)_文件上传、异常处理、拦截器

    实现文件上传 实现文件上传,需要借助以下两个第三方 jar 包对上传的二进制文件进行解析: commons-fileupload commons-io form表单的 enctype 取值必须为:mu ...

  2. Codeforces 1117C Magic Ship (二分)

    题意: 船在一个坐标,目的地在一个坐标,每天会有一个风向将船刮一个单位,船也可以移动一个单位或不动,问最少几天可以到目的地 思路: 二分天数,对于第k天 可以分解成船先被吹了k天,到达坐标(x1+su ...

  3. BZOJ 1009 [HNOI2008]GT考试(矩阵快速幂优化DP+KMP)

    题意: 求长度为n的不含长为m的指定子串的字符串的个数 1s, n<=1e9, m<=50 思路: 长见识了.. 设那个指定子串为s f[i][j]表示长度为i的字符串(其中后j个字符与s ...

  4. vue子向父传值

    要弄懂子组件如何向父组件传值,需要理清步骤 子组件向父组件传值的步骤 一:子组件在组件标签上通过绑定事件的方式向父组件发射数据 <!--html--><template id=&qu ...

  5. 【python爬虫】windoes的爬虫中文乱码现象,通用转码解决

    page = session.get(url="https://www.qidian.com/") page.encoding = page.apparent_encoding p ...

  6. Coroutine 终止协程和异常处理

    终止协程和异常处理 协程中未处理的异常会向上冒泡,传给 next 函数或 send 方法的调用方(即触发协程的对象) 终止协程的一种方式:发送某个哨符值,让协程退出.内置的 None 和 Ellips ...

  7. VMware复制Linux虚拟机后网络配置

    1.启动虚拟机,点击我已复制 点击已复制后,VMware将会为重置虚拟机网卡mac地址. 2.修改网卡mac地址 3.ifconfig显示网卡名称与配置不一致处理 Centos6中ifconfig显示 ...

  8. C语言快速排序函数------qsort();

    #include<stdio.h> #include<stdlib.h> #include<string.h> #include<conio.h> ty ...

  9. 记录KVM虚拟机常用操作管理命令

    环境说明 centos7中的KVM NAT方式是kvm安装后的默认方式.它支持主机与虚拟机的互访,同时也支持虚拟机访问互联网,但不支持外界访问虚拟机. 检查当前的网络设置 # virsh net-li ...

  10. Flink1.9重大改进和新功能

    一.Flink1.9.0的里程碑意义 二.重构 Flink WebUI Flink社区讨论了现代化 Flink WebUI 的提案,决定采用 Angular 的最新稳定版来重构这个组件.从Angula ...