吴裕雄 python 机器学习——回归决策树模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor def creat_data(n):
np.random.seed(0)
X = 5 * np.random.rand(n, 1)
y = np.sin(X).ravel()
noise_num=(int)(n/5)
# 每第5个样本,就在该样本的值上添加噪音
y[::5] += 3 * (0.5 - np.random.rand(noise_num))
return train_test_split(X, y,test_size=0.25,random_state=1) #决策树DecisionTreeRegressor模型
def test_DecisionTreeRegressor(*data):
X_train,X_test,y_train,y_test=data
regr = DecisionTreeRegressor()
regr.fit(X_train, y_train)
print("Training score:%f"%(regr.score(X_train,y_train)))
print("Testing score:%f"%(regr.score(X_test,y_test)))
#绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
X = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
Y = regr.predict(X)
ax.scatter(X_train, y_train, label="train sample",c='g')
ax.scatter(X_test, y_test, label="test sample",c='r')
ax.plot(X, Y, label="predict_value", linewidth=2,alpha=0.5)
ax.set_xlabel("data")
ax.set_ylabel("target")
ax.set_title("Decision Tree Regression")
ax.legend(framealpha=0.5)
plt.show() # 产生用于回归问题的数据集
X_train,X_test,y_train,y_test=creat_data(100)
# 调用 test_DecisionTreeRegressor
test_DecisionTreeRegressor(X_train,X_test,y_train,y_test)

def test_DecisionTreeRegressor_splitter(*data):
'''
测试 DecisionTreeRegressor 预测性能随划分类型的影响
'''
X_train,X_test,y_train,y_test=data
splitters=['best','random']
for splitter in splitters:
regr = DecisionTreeRegressor(splitter=splitter)
regr.fit(X_train, y_train)
print("Splitter %s"%splitter)
print("Training score:%f"%(regr.score(X_train,y_train)))
print("Testing score:%f"%(regr.score(X_test,y_test))) # 调用 test_DecisionTreeRegressor_splitter
test_DecisionTreeRegressor_splitter(X_train,X_test,y_train,y_test)

def test_DecisionTreeRegressor_depth(*data,maxdepth):
'''
测试 DecisionTreeRegressor 预测性能随 max_depth 的影响
'''
X_train,X_test,y_train,y_test=data
depths=np.arange(1,maxdepth)
training_scores=[]
testing_scores=[]
for depth in depths:
regr = DecisionTreeRegressor(max_depth=depth)
regr.fit(X_train, y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
# 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(depths,training_scores,label="traing score")
ax.plot(depths,testing_scores,label="testing score")
ax.set_xlabel("maxdepth")
ax.set_ylabel("score")
ax.set_title("Decision Tree Regression")
ax.legend(framealpha=0.5)
plt.show() # 调用 test_DecisionTreeRegressor_depth
test_DecisionTreeRegressor_depth(X_train,X_test,y_train,y_test,maxdepth=20)

吴裕雄 python 机器学习——回归决策树模型的更多相关文章
- 吴裕雄 python 机器学习——分类决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——核化PCAKernelPCA模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——模型选择回归问题性能度量
from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...
- 吴裕雄 python 机器学习——线性回归模型
import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...
- 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
随机推荐
- Android OkHttp Get请求方式
1.导入okhttp-2.7.5.jar和okio-1.11.0.jar 2.Get请求 public void getDataByGet(){ OkHttpClient client = new O ...
- squid http,https, 代理,默认端口3128
squid http,https, 代理,默认端口3128 https 代理时出现 403,是因为squid默认允许 192.168.0.0 网段代理 在配置文件中,““acl localnet sr ...
- 嵌入式V3s交叉编译 tslib和QT4.8.7,并使用Qt Creator编译项目
本文主参考:http://zero.lichee.pro/%E5%BA%94%E7%94%A8/QT_index.html 环境 Ubuntu16 64位 arm-linux-gnueabihf ve ...
- 华为PAY公交卡建议开卡免费!
华为PAY公交卡,大家都知道是华为与当地交通卡通公司合作的,开卡费大概15-29元,最低充值10-30元. 估计大部分开卡费是给了当地交通卡公司,华为也应该有收入分成.这个虚拟公交卡,不同于实体公交卡 ...
- uWSGI的配置与发布
参考: https://www.cnblogs.com/pyyu/p/9481344.html 一.什么是wsgi, uwsgi, uWSGI wsgi 全称web server gateway ...
- layer弹出层父子页面交互(子页面form表单提交)
例如:父页面中有数据需要修改,但不需要跳转到下一个页面进行处理 例图:
- Nestjs学习进度-180420
# 一.已完成:# 1.将NPM降级到4.6.1,保证Nest环境正常: 2.成功运行了示例程序:https://docs.nestjs.cn/4.6/firststeps 3.粗略看了下文档. # ...
- 对象名 'dbo.__MigrationHistory' 无效 错误解决
// 在数据库上下文的构造方法里 public GewPeAppContext() : base(ConnectionStrings.GewPeAppConnectionString) { // 添加 ...
- Intellij IDEA超好用的快捷键
1.首推 Ctrl+Shift+Enter,自动跳出括号,在行尾添加分号,并自动回车. 2.Ctrl+Shift+J,将多行代码折叠成一行. 当你遇到的时候,这个快捷键非常实用.比如你在写painle ...
- Redis深入学习笔记(三)RDB及AOF流程
RDB是Redis持久化数据的一种方式,是执行时间点的Redis内存快照,redis数据还原时加载rdb文件,Redis的主从数据同步也是基于RDB实现的. RDB流程: 1)执行bgsave命令,R ...