吴裕雄 python 机器学习——回归决策树模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor def creat_data(n):
np.random.seed(0)
X = 5 * np.random.rand(n, 1)
y = np.sin(X).ravel()
noise_num=(int)(n/5)
# 每第5个样本,就在该样本的值上添加噪音
y[::5] += 3 * (0.5 - np.random.rand(noise_num))
return train_test_split(X, y,test_size=0.25,random_state=1) #决策树DecisionTreeRegressor模型
def test_DecisionTreeRegressor(*data):
X_train,X_test,y_train,y_test=data
regr = DecisionTreeRegressor()
regr.fit(X_train, y_train)
print("Training score:%f"%(regr.score(X_train,y_train)))
print("Testing score:%f"%(regr.score(X_test,y_test)))
#绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
X = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
Y = regr.predict(X)
ax.scatter(X_train, y_train, label="train sample",c='g')
ax.scatter(X_test, y_test, label="test sample",c='r')
ax.plot(X, Y, label="predict_value", linewidth=2,alpha=0.5)
ax.set_xlabel("data")
ax.set_ylabel("target")
ax.set_title("Decision Tree Regression")
ax.legend(framealpha=0.5)
plt.show() # 产生用于回归问题的数据集
X_train,X_test,y_train,y_test=creat_data(100)
# 调用 test_DecisionTreeRegressor
test_DecisionTreeRegressor(X_train,X_test,y_train,y_test)
def test_DecisionTreeRegressor_splitter(*data):
'''
测试 DecisionTreeRegressor 预测性能随划分类型的影响
'''
X_train,X_test,y_train,y_test=data
splitters=['best','random']
for splitter in splitters:
regr = DecisionTreeRegressor(splitter=splitter)
regr.fit(X_train, y_train)
print("Splitter %s"%splitter)
print("Training score:%f"%(regr.score(X_train,y_train)))
print("Testing score:%f"%(regr.score(X_test,y_test))) # 调用 test_DecisionTreeRegressor_splitter
test_DecisionTreeRegressor_splitter(X_train,X_test,y_train,y_test)
def test_DecisionTreeRegressor_depth(*data,maxdepth):
'''
测试 DecisionTreeRegressor 预测性能随 max_depth 的影响
'''
X_train,X_test,y_train,y_test=data
depths=np.arange(1,maxdepth)
training_scores=[]
testing_scores=[]
for depth in depths:
regr = DecisionTreeRegressor(max_depth=depth)
regr.fit(X_train, y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
# 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(depths,training_scores,label="traing score")
ax.plot(depths,testing_scores,label="testing score")
ax.set_xlabel("maxdepth")
ax.set_ylabel("score")
ax.set_title("Decision Tree Regression")
ax.legend(framealpha=0.5)
plt.show() # 调用 test_DecisionTreeRegressor_depth
test_DecisionTreeRegressor_depth(X_train,X_test,y_train,y_test,maxdepth=20)
吴裕雄 python 机器学习——回归决策树模型的更多相关文章
- 吴裕雄 python 机器学习——分类决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——核化PCAKernelPCA模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——模型选择回归问题性能度量
from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...
- 吴裕雄 python 机器学习——线性回归模型
import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...
- 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
随机推荐
- celery+Rabbit MQ实战记录
基于以前的一篇文章,celery+Rabbit MQ的安装和使用, 本文更加详细的介绍如何安装和使用celey, Rabbit MQ. 并记录在使用celery时遇到的一些问题. 1.安装 Rabbi ...
- 图形化SVN管理搭建 subversion edge自行修改密码
参考文章: https://blog.csdn.net/buyaore_wo/article/details/84313467 安装版本: Subversion Edge 5.2.3 (Linux 6 ...
- Centos 7 安装图形化环境
安装系统时,使用了最小化安装,当需要用到图形界面的时候需要安装图形界面支持 环境是centos7.5最小化安装 1,先更新系统 yum -y upgrade 这里说明一下upgrade和update的 ...
- redis 缓存击穿 看一篇成高手系列3
什么是缓存击穿 在谈论缓存击穿之前,我们先来回忆下从缓存中加载数据的逻辑,如下图所示 因此,如果黑客每次故意查询一个在缓存内必然不存在的数据,导致每次请求都要去存储层去查询,这样缓存就失去了意义.如果 ...
- CentOS下Redis的安装(转)
目录 CentOS下Redis的安装 前言 下载安装包 解压安装包并安装 启动和停止Redis 启动Redis 停止Redis 参考资料 CentOS下Redis的安装 前言 安装Redis需要知道自 ...
- Anaconda下安装OpenCV
安装命令:conda install -c https://conda.binstar.org/menpo opencvwin10+Anaconda3+python3.5.2,最终cv版本为3.3.1 ...
- CentOS 7.x 如何关闭 numa
CentOS7.x中发现 numactl --interleave=all 执行失败. CentOS7.x中可以通过下面的方式关闭 numa: 1. 编辑 /etc/default/grub 文件,如 ...
- 弹框时(如大于body的高度),锁死body,使其不能滚动
if(flag){ document.body.style.height = '100vh' document.body.style['overflow-y'] = 'hidden' }else{ d ...
- c#调用python代码
c#调用python的方法比较多,比如ironpython,尽管不用安装python环境,可是不兼容python众多的包,也只更新到了python2,通过创建python进程这种方式可以很好的解决兼容 ...
- kmeans
K均值(K-means)算法 ).setSeed(1L) val model=kmeans.fit(dataset) //Make predictions val predictions=model. ...