吴裕雄 python 机器学习——回归决策树模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor def creat_data(n):
np.random.seed(0)
X = 5 * np.random.rand(n, 1)
y = np.sin(X).ravel()
noise_num=(int)(n/5)
# 每第5个样本,就在该样本的值上添加噪音
y[::5] += 3 * (0.5 - np.random.rand(noise_num))
return train_test_split(X, y,test_size=0.25,random_state=1) #决策树DecisionTreeRegressor模型
def test_DecisionTreeRegressor(*data):
X_train,X_test,y_train,y_test=data
regr = DecisionTreeRegressor()
regr.fit(X_train, y_train)
print("Training score:%f"%(regr.score(X_train,y_train)))
print("Testing score:%f"%(regr.score(X_test,y_test)))
#绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
X = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
Y = regr.predict(X)
ax.scatter(X_train, y_train, label="train sample",c='g')
ax.scatter(X_test, y_test, label="test sample",c='r')
ax.plot(X, Y, label="predict_value", linewidth=2,alpha=0.5)
ax.set_xlabel("data")
ax.set_ylabel("target")
ax.set_title("Decision Tree Regression")
ax.legend(framealpha=0.5)
plt.show() # 产生用于回归问题的数据集
X_train,X_test,y_train,y_test=creat_data(100)
# 调用 test_DecisionTreeRegressor
test_DecisionTreeRegressor(X_train,X_test,y_train,y_test)

def test_DecisionTreeRegressor_splitter(*data):
'''
测试 DecisionTreeRegressor 预测性能随划分类型的影响
'''
X_train,X_test,y_train,y_test=data
splitters=['best','random']
for splitter in splitters:
regr = DecisionTreeRegressor(splitter=splitter)
regr.fit(X_train, y_train)
print("Splitter %s"%splitter)
print("Training score:%f"%(regr.score(X_train,y_train)))
print("Testing score:%f"%(regr.score(X_test,y_test))) # 调用 test_DecisionTreeRegressor_splitter
test_DecisionTreeRegressor_splitter(X_train,X_test,y_train,y_test)

def test_DecisionTreeRegressor_depth(*data,maxdepth):
'''
测试 DecisionTreeRegressor 预测性能随 max_depth 的影响
'''
X_train,X_test,y_train,y_test=data
depths=np.arange(1,maxdepth)
training_scores=[]
testing_scores=[]
for depth in depths:
regr = DecisionTreeRegressor(max_depth=depth)
regr.fit(X_train, y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
# 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(depths,training_scores,label="traing score")
ax.plot(depths,testing_scores,label="testing score")
ax.set_xlabel("maxdepth")
ax.set_ylabel("score")
ax.set_title("Decision Tree Regression")
ax.legend(framealpha=0.5)
plt.show() # 调用 test_DecisionTreeRegressor_depth
test_DecisionTreeRegressor_depth(X_train,X_test,y_train,y_test,maxdepth=20)

吴裕雄 python 机器学习——回归决策树模型的更多相关文章
- 吴裕雄 python 机器学习——分类决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——核化PCAKernelPCA模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——模型选择回归问题性能度量
from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...
- 吴裕雄 python 机器学习——线性回归模型
import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...
- 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
随机推荐
- 把一个对象转成map对象
import java.lang.reflect.Field;import java.util.HashMap; public class Util { public static HashMap&l ...
- JavaScript的定时器如何先触发一次再延时
var data3=0; (function count3(){ console.log("count3:",data3++); setTimeout(count3,1000); ...
- NLP VS NLU
NLP(Natural Language Processing )自然语言处理:是计算机科学,人工智能和语言学的交叉领域.目标是让计算机处理或“理解”自然语言,以执行语言翻译和问题回答等任务.NLU ...
- Ignite(一): 概述
1.关于Apache Ignite Apache Ignite是一个以内存为中心的分布式数据库.缓存和处理平台,支持事务.分析以及流式负载,可以在PB级数据上享有内存级的性能.比传统的基于磁盘或闪存的 ...
- webAPP如何实现移动端拍照上传(Vue组件示例)?
摘要:使用HTML5编写移动Web应用,主要是为了尝试一下“一套代码多处运行”,一个webapp几乎可以不加修改的运行在PC/Android/iOS等上面运行.但是写到现在觉得虽然这种方式弊大于利,不 ...
- [原创] JAVA 递归线程池测试 ExecutorService / ForkJoinPool
测试工具使用递归的方式获取子进程的Msg消息,目前有2种常用的ExecutorService / ForkJoinPool 为了测试哪种效果较好,我们来写个测试Demo,循环5555555次+1(加锁 ...
- 联想T470笔记本GPT改MBR分区
联想T470笔记本GPT改MBR分区 7000多元买的,这个笔记本配置还可以,就是感觉特别卡顿,于是想重做WIN7系统,为了方便激活,想把GPT分区改成MBR分区. 进入微PE1.2,用傲梅分区助手删 ...
- Ubuntu14.04安装 ROS 安装步骤和问题总结
参考: 1.http://wiki.ros.org/indigo/Installation/Ubuntu 2.安装出现依赖库问题: https://answers.ros.org/question/3 ...
- VM12中CentOS7以NAT方式连接网络的方法
解决问题:centos网络连不上,连不上主机,ifconfig等命令不能用(配完有网了,安装上就好了)等问题 前提:安装vm12,centos7(最小安装) 注意:以下以192开头的,你都要替换成自 ...
- alpha阶段发布博客
我们的Phylab网站发布了! Alpha版本功能 模块 功能 注册界面 根据邮箱,学号等信息注册新用户 登陆界面 根据账号信息登陆 用户界面 查看,修改用户信息和签名 实验报告界面 查看各个实验预习 ...