吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(完整版)
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load in import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory
import os, sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import skimage.io
from skimage.transform import resize
#from imgaug import augmenters as iaa
from tqdm import tqdm
import PIL
from PIL import Image, ImageOps
import cv2
from sklearn.utils import class_weight, shuffle
from keras.losses import binary_crossentropy
from keras.applications.resnet50 import preprocess_input
import keras.backend as K
import tensorflow as tf
from sklearn.metrics import f1_score, fbeta_score
from keras.utils import Sequence
from keras.utils import to_categorical
from sklearn.model_selection import train_test_split WORKERS = 2
CHANNEL = 3 import warnings
warnings.filterwarnings("ignore")
IMG_SIZE = 512
NUM_CLASSES = 5
SEED = 77
TRAIN_NUM = 1000 # use 1000 when you just want to explore new idea, use -1 for full train
df_train = pd.read_csv('F:\\kaggleDataSet\\diabeticRetinopathy\\trainLabels19.csv')
df_test = pd.read_csv('F:\\kaggleDataSet\\diabeticRetinopathy\\testImages19.csv') x = df_train['id_code']
y = df_train['diagnosis'] x, y = shuffle(x, y, random_state=SEED)
train_x, valid_x, train_y, valid_y = train_test_split(x, y, test_size=0.15,stratify=y, random_state=SEED)
print(train_x.shape, train_y.shape, valid_x.shape, valid_y.shape)
train_y.hist()
valid_y.hist()
%%time
fig = plt.figure(figsize=(25, 16))
# display 10 images from each class
for class_id in sorted(train_y.unique()):
for i, (idx, row) in enumerate(df_train.loc[df_train['diagnosis'] == class_id].sample(5, random_state=SEED).iterrows()):
ax = fig.add_subplot(5, 5, class_id * 5 + i + 1, xticks=[], yticks=[])
path="F:\\kaggleDataSet\\diabeticRetinopathy\\resized train 19\\"+str(row['id_code'])+".jpg"
image = cv2.imread(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
plt.imshow(image)
ax.set_title('Label: %d-%d-%s' % (class_id, idx, row['id_code']) )
%%time
fig = plt.figure(figsize=(25, 16))
for class_id in sorted(train_y.unique()):
for i, (idx, row) in enumerate(df_train.loc[df_train['diagnosis'] == class_id].sample(5, random_state=SEED).iterrows()):
ax = fig.add_subplot(5, 5, class_id * 5 + i + 1, xticks=[], yticks=[])
path="F:\\kaggleDataSet\\diabeticRetinopathy\\resized train 19\\"+str(row['id_code'])+".jpg"
image = cv2.imread(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# image=cv2.addWeighted ( image, 0 , cv2.GaussianBlur( image , (0 ,0 ) , 10) ,-4 ,128)
image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
plt.imshow(image, cmap='gray')
ax.set_title('Label: %d-%d-%s' % (class_id, idx, row['id_code']) )
dpi = 80 #inch # path=f"../input/aptos2019-blindness-detection/train_images/5c7ab966a3ee.png" # notice upper part
path="F:\\kaggleDataSet\\diabeticRetinopathy\\resized train 19\\cd54d022e37d.jpg" # lower-right, this still looks not so severe, can be class3
image = cv2.imread(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
height, width = image.shape
print(height, width) SCALE=2
figsize = (width / float(dpi))/SCALE, (height / float(dpi))/SCALE fig = plt.figure(figsize=figsize)
plt.imshow(image, cmap='gray')
%%time
fig = plt.figure(figsize=(25, 16))
for class_id in sorted(train_y.unique()):
for i, (idx, row) in enumerate(df_train.loc[df_train['diagnosis'] == class_id].sample(5, random_state=SEED).iterrows()):
ax = fig.add_subplot(5, 5, class_id * 5 + i + 1, xticks=[], yticks=[])
path="F:\\kaggleDataSet\\diabeticRetinopathy\\resized train 19\\"+str(row['id_code'])+".jpg"
image = cv2.imread(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
image=cv2.addWeighted ( image,4, cv2.GaussianBlur( image , (0,0) , IMG_SIZE/10) ,-4 ,128) # the trick is to add this line plt.imshow(image, cmap='gray')
ax.set_title('Label: %d-%d-%s' % (class_id, idx, row['id_code']) )
def crop_image1(img,tol=7):
# img is image data
# tol is tolerance
mask = img>tol
return img[np.ix_(mask.any(1),mask.any(0))] def crop_image_from_gray(img,tol=7):
if img.ndim ==2:
mask = img>tol
return img[np.ix_(mask.any(1),mask.any(0))]
elif img.ndim==3:
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
mask = gray_img>tol
check_shape = img[:,:,0][np.ix_(mask.any(1),mask.any(0))].shape[0]
if (check_shape == 0): # image is too dark so that we crop out everything,
return img # return original image
else:
img1=img[:,:,0][np.ix_(mask.any(1),mask.any(0))]
img2=img[:,:,1][np.ix_(mask.any(1),mask.any(0))]
img3=img[:,:,2][np.ix_(mask.any(1),mask.any(0))]
# print(img1.shape,img2.shape,img3.shape)
img = np.stack([img1,img2,img3],axis=-1)
# print(img.shape)
return img
def load_ben_color(path, sigmaX=10):
image = cv2.imread(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = crop_image_from_gray(image)
image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
image=cv2.addWeighted ( image,4, cv2.GaussianBlur( image , (0,0) , sigmaX) ,-4 ,128)
return image
%%time NUM_SAMP=7
fig = plt.figure(figsize=(25, 16))
for class_id in sorted(train_y.unique()):
for i, (idx, row) in enumerate(df_train.loc[df_train['diagnosis'] == class_id].sample(NUM_SAMP, random_state=SEED).iterrows()):
ax = fig.add_subplot(5, NUM_SAMP, class_id * NUM_SAMP + i + 1, xticks=[], yticks=[])
path="F:\\kaggleDataSet\\diabeticRetinopathy\\resized train 19\\"+str(row['id_code'])+".jpg"
image = load_ben_color(path,sigmaX=30)
plt.imshow(image)
ax.set_title('%d-%d-%s' % (class_id, idx, row['id_code']) )
def circle_crop(img, sigmaX=10):
"""
Create circular crop around image centre
"""
img = cv2.imread(img)
img = crop_image_from_gray(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
height, width, depth = img.shape
x = int(width/2)
y = int(height/2)
r = np.amin((x,y))
circle_img = np.zeros((height, width), np.uint8)
cv2.circle(circle_img, (x,y), int(r), 1, thickness=-1)
img = cv2.bitwise_and(img, img, mask=circle_img)
img = crop_image_from_gray(img)
img=cv2.addWeighted ( img,4, cv2.GaussianBlur( img , (0,0) , sigmaX) ,-4 ,128)
return img
%%time
## try circle crop
NUM_SAMP=7
fig = plt.figure(figsize=(25, 16))
for class_id in sorted(train_y.unique()):
for i, (idx, row) in enumerate(df_train.loc[df_train['diagnosis'] == class_id].sample(NUM_SAMP, random_state=SEED).iterrows()):
ax = fig.add_subplot(5, NUM_SAMP, class_id * NUM_SAMP + i + 1, xticks=[], yticks=[])
path="F:\\kaggleDataSet\\diabeticRetinopathy\\resized train 19\\"+str(row['id_code'])+".jpg"
image = circle_crop(path,sigmaX=30)
plt.imshow(image)
ax.set_title('%d-%d-%s' % (class_id, idx, row['id_code']) )
dpi = 80 #inch
path="F:\\kaggleDataSet\\diabeticRetinopathy\\resized train 19\\cd54d022e37d.jpg"
image = load_ben_color(path,sigmaX=10) height, width = IMG_SIZE, IMG_SIZE
print(height, width) SCALE=1
figsize = (width / float(dpi))/SCALE, (height / float(dpi))/SCALE fig = plt.figure(figsize=figsize)
plt.imshow(image, cmap='gray')
%%time
NUM_SAMP=10
fig = plt.figure(figsize=(25, 16))
for jj in range(5):
for i, (idx, row) in enumerate(df_test.sample(NUM_SAMP,random_state=SEED+jj).iterrows()):
ax = fig.add_subplot(5, NUM_SAMP, jj * NUM_SAMP + i + 1, xticks=[], yticks=[])
path="F:\\kaggleDataSet\\diabeticRetinopathy\\resized test 19\\"+str(row['id_code'])+".jpg"
image = load_ben_color(path,sigmaX=30)
plt.imshow(image)
ax.set_title('%d-%s' % (idx, row['id_code']) )
%%time
NUM_SAMP=10
fig = plt.figure(figsize=(25, 16))
for jj in range(5):
for i, (idx, row) in enumerate(df_test.sample(NUM_SAMP,random_state=SEED+jj).iterrows()):
ax = fig.add_subplot(5, NUM_SAMP, jj * NUM_SAMP + i + 1, xticks=[], yticks=[])
path="F:\\kaggleDataSet\\diabeticRetinopathy\\resized test 19\\"+str(row['id_code'])+".jpg"
image = load_ben_color(path,sigmaX=50)
plt.imshow(image, cmap='gray')
ax.set_title('%d-%s' % (idx, row['id_code']) )
df_old = pd.read_csv('F:\\kaggleDataSet\\diabeticRetinopathy\\trainLabels.csv')
df_old.head()
NUM_SAMP=10
fig = plt.figure(figsize=(25, 16))
for class_id in sorted(train_y.unique()):
for i, (idx, row) in enumerate(df_old.loc[df_old['level'] == class_id].sample(NUM_SAMP, random_state=SEED).iterrows()):
ax = fig.add_subplot(5, NUM_SAMP, class_id * NUM_SAMP + i + 1, xticks=[], yticks=[])
path="F:\\kaggleDataSet\\diabeticRetinopathy\\resized_train\\"+row['image']+".jpeg"
image = load_ben_color(path,sigmaX=30)
plt.imshow(image)
ax.set_title('%d-%d-%s' % (class_id, idx, row['image']) )
NUM_SAMP=10
fig = plt.figure(figsize=(25, 16))
for class_id in sorted(train_y.unique()):
for i, (idx, row) in enumerate(df_old.loc[df_old['level'] == class_id].sample(NUM_SAMP, random_state=SEED).iterrows()):
ax = fig.add_subplot(5, NUM_SAMP, class_id * NUM_SAMP + i + 1, xticks=[], yticks=[])
path="F:\\kaggleDataSet\\diabeticRetinopathy\\resized_train\\"+row['image']+".jpeg"
image = cv2.imread(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
plt.imshow(image, cmap='gray')
ax.set_title('%d-%d-%s' % (class_id, idx, row['image']) )
dpi = 80 #inch path=f"F:\\kaggleDataSet\\diabeticRetinopathy\\resized_train\\31590_right.jpeg" # too many vessels?
image = load_ben_color(path,sigmaX=30)
# image = cv2.imread(path)
# image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# image = crop_image1(image)
# image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
# image=cv2.addWeighted ( image,4, cv2.GaussianBlur( image , (0,0) , IMG_SIZE/10) ,-4 ,128) height, width = IMG_SIZE, IMG_SIZE
print(height, width)
SCALE=1
figsize = (width / float(dpi))/SCALE, (height / float(dpi))/SCALE
fig = plt.figure(figsize=figsize)
plt.imshow(image, cmap='gray')
dpi = 80 #inch path_jpg=f"F:\\kaggleDataSet\\diabeticRetinopathy\\resized_train_cropped\\18017_left.jpeg" # too many vessels?
path_png=f"F:\\kaggleDataSet\\diabeticRetinopathy\\rescaled_train_896\\18017_left.png" # details are lost
image = cv2.imread(path_png)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (IMG_SIZE, IMG_SIZE)) image2 = cv2.imread(path_jpg)
image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
image2 = cv2.resize(image2, (IMG_SIZE, IMG_SIZE)) height, width = IMG_SIZE, IMG_SIZE
print(height, width) SCALE=1/4
figsize = (width / float(dpi))/SCALE, (height / float(dpi))/SCALE fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(2, 2, 1, xticks=[], yticks=[])
ax.set_title('png format original' )
plt.imshow(image, cmap='gray')
ax = fig.add_subplot(2, 2, 2, xticks=[], yticks=[])
ax.set_title('jpg format original' )
plt.imshow(image2, cmap='gray') image = load_ben_color(path_png,sigmaX=30)
image2 = load_ben_color(path_jpg,sigmaX=30)
ax = fig.add_subplot(2, 2, 3, xticks=[], yticks=[])
ax.set_title('png format transformed' )
plt.imshow(image, cmap='gray')
ax = fig.add_subplot(2, 2, 4, xticks=[], yticks=[])
ax.set_title('jpg format transformed' )
plt.imshow(image2, cmap='gray')
import json
import math
import os import cv2
from PIL import Image
import numpy as np
from keras import layers
from keras.applications import DenseNet121
from keras.callbacks import Callback, ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import cohen_kappa_score, accuracy_score
import scipy
from tqdm import tqdm %matplotlib inline
train_df = pd.read_csv('F:\\kaggleDataSet\\diabeticRetinopathy\\trainLabels19.csv')
test_df = pd.read_csv('F:\\kaggleDataSet\\diabeticRetinopathy\\testImages19.csv')
print(train_df.shape)
print(test_df.shape)
test_df.head()
def get_pad_width(im, new_shape, is_rgb=True):
pad_diff = new_shape - im.shape[0], new_shape - im.shape[1]
t, b = math.floor(pad_diff[0]/2), math.ceil(pad_diff[0]/2)
l, r = math.floor(pad_diff[1]/2), math.ceil(pad_diff[1]/2)
if is_rgb:
pad_width = ((t,b), (l,r), (0, 0))
else:
pad_width = ((t,b), (l,r))
return pad_width def preprocess_image(image_path, desired_size=224):
im = Image.open(image_path)
im = im.resize((desired_size, )*2, resample=Image.LANCZOS)
return im
N = test_df.shape[0]
x_test = np.empty((N, 224, 224, 3), dtype=np.uint8) for i, image_id in enumerate(tqdm(test_df['id_code'])):
x_test[i, :, :, :] = preprocess_image("F:\\kaggleDataSet\\diabeticRetinopathy\\resized test 19\\"+str(image_id)+".jpg")
# model.summary()
def load_image_ben_orig(path,resize=True,crop=False,norm255=True,keras=False):
image = cv2.imread(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image=cv2.addWeighted( image,4, cv2.GaussianBlur( image , (0,0) , 10) ,-4 ,128)
if norm255:
return image/255
elif keras:
#see https://github.com/keras-team/keras-applications/blob/master/keras_applications/imagenet_utils.py for mode
#see https://github.com/keras-team/keras-applications/blob/master/keras_applications/xception.py for inception,xception mode
#the use of tf based preprocessing (- and / by 127 respectively) will results in [-1,1] so it will not visualize correctly (directly)
image = np.expand_dims(image, axis=0)
return preprocess_input(image)[0]
else:
return image.astype(np.int16)
return image def transform_image_ben(img,resize=True,crop=False,norm255=True,keras=False):
image=cv2.addWeighted( img,4, cv2.GaussianBlur( img , (0,0) , 10) ,-4 ,128)
if norm255:
return image/255
elif keras:
image = np.expand_dims(image, axis=0)
return preprocess_input(image)[0]
else:
return image.astype(np.int16)
return image
def display_samples(df, columns=5, rows=2, Ben=True):
fig=plt.figure(figsize=(5*columns, 4*rows))
for i in range(columns*rows):
image_path = df.loc[i,'id_code']
path = f"F:\\kaggleDataSet\\diabeticRetinopathy\\resized test 19\\"+str(image_path)+".jpg"
if Ben:
img = load_image_ben_orig(path)
else:
img = cv2.imread(path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
fig.add_subplot(rows, columns, i+1)
plt.imshow(img)
plt.tight_layout()
display_samples(test_df, Ben=False)
display_samples(test_df, Ben=True)
from keras import layers
from keras.models import Model
import keras.backend as K
K.clear_session()
densenet = DenseNet121(weights=None,include_top=False,input_shape=(None,None,3))
GAP_layer = layers.GlobalAveragePooling2D()
drop_layer = layers.Dropout(0.5)
dense_layer = layers.Dense(5, activation='sigmoid', name='final_output')
def build_model_sequential():
model = Sequential()
model.add(densenet)
model.add(GAP_layer)
model.add(drop_layer)
model.add(dense_layer)
return model
modelA = build_model_sequential()
modelA.load_weights('F:\\kaggleDataSet\\diabeticRetinopathy\\dense_xhlulu_731.h5')
modelA.summary()
model = build_model_functional() # with pretrained weights, and layers we want
model.summary()
y_test = model.predict(x_test) > 0.5
y_test = y_test.astype(int).sum(axis=1) - 1
import seaborn as sns
import cv2 SIZE=224
def create_pred_hist(pred_level_y,title='NoTitle'):
results = pd.DataFrame({'diagnosis':pred_level_y})
f, ax = plt.subplots(figsize=(7, 4))
ax = sns.countplot(x="diagnosis", data=results, palette="GnBu_d")
sns.despine()
plt.title(title)
plt.show() create_pred_hist(y_test,title='predicted level distribution in test set')
def gen_heatmap_img(img, model0, layer_name='last_conv_layer',viz_img=None,orig_img=None):
preds_raw = model0.predict(img[np.newaxis])
preds = preds_raw > 0.5 # use the same threshold as @xhlulu original kernel
class_idx = (preds.astype(int).sum(axis=1) - 1)[0]
class_output_tensor = model0.output[:, class_idx] viz_layer = model0.get_layer(layer_name)
grads = K.gradients(class_output_tensor ,viz_layer.output)[0] # gradients of viz_layer wrt output_tensor of predicted class
pooled_grads=K.mean(grads,axis=(0,1,2))
iterate=K.function([model0.input],[pooled_grads, viz_layer.output[0]])
pooled_grad_value, viz_layer_out_value = iterate([img[np.newaxis]])
for i in range(pooled_grad_value.shape[0]):
viz_layer_out_value[:,:,i] *= pooled_grad_value[i]
heatmap = np.mean(viz_layer_out_value, axis=-1)
heatmap = np.maximum(heatmap,0)
heatmap /= np.max(heatmap)
viz_img=cv2.resize(viz_img,(img.shape[1],img.shape[0]))
heatmap=cv2.resize(heatmap,(viz_img.shape[1],viz_img.shape[0]))
heatmap_color = cv2.applyColorMap(np.uint8(heatmap*255), cv2.COLORMAP_SPRING)/255
heated_img = heatmap_color*0.5 + viz_img*0.5
print('raw output from model : ')
print_pred(preds_raw)
if orig_img is None:
show_Nimages([img,viz_img,heatmap_color,heated_img])
else:
show_Nimages([orig_img,img,viz_img,heatmap_color,heated_img])
plt.show()
return heated_img
def show_image(image,figsize=None,title=None):
if figsize is not None:
fig = plt.figure(figsize=figsize)
if image.ndim == 2:
plt.imshow(image,cmap='gray')
else:
plt.imshow(image)
if title is not None:
plt.title(title) def show_Nimages(imgs,scale=1):
N=len(imgs)
fig = plt.figure(figsize=(25/scale, 16/scale))
for i, img in enumerate(imgs):
ax = fig.add_subplot(1, N, i + 1, xticks=[], yticks=[])
show_image(img) def print_pred(array_of_classes):
xx = array_of_classes
s1,s2 = xx.shape
for i in range(s1):
for j in range(s2):
print('%.3f ' % xx[i,j],end='')
print('')
NUM_SAMP=10
SEED=77
layer_name = 'relu' #'conv5_block16_concat'
for i, (idx, row) in enumerate(test_df[:NUM_SAMP].iterrows()):
path=f"F:\\kaggleDataSet\\diabeticRetinopathy\\resized test 19\\"+str(row["id_code"])+".jpg"
ben_img = load_image_ben_orig(path)
input_img = np.empty((1,224, 224, 3), dtype=np.uint8)
input_img[0,:,:,:] = preprocess_image(path)
print('test pic no.%d' % (i+1))
_ = gen_heatmap_img(input_img[0],model, layer_name=layer_name,viz_img=ben_img)
from albumentations import *
import time IMG_SIZE = (224,224) '''Use case from https://www.kaggle.com/alexanderliao/image-augmentation-demo-with-albumentation/'''
def albaugment(aug0, img):
return aug0(image=img)['image']
idx=8
image1=x_test[idx] '''1. Rotate or Flip'''
aug1 = OneOf([Rotate(p=0.99, limit=160, border_mode=0,value=0), Flip(p=0.5)],p=1) '''2. Adjust Brightness or Contrast'''
aug2 = RandomBrightnessContrast(brightness_limit=0.45, contrast_limit=0.45,p=1)
h_min=np.round(IMG_SIZE[1]*0.72).astype(int)
h_max= np.round(IMG_SIZE[1]*0.9).astype(int)
print(h_min,h_max) '''3. Random Crop and then Resize'''
#w2h_ratio = aspect ratio of cropping
aug3 = RandomSizedCrop((h_min, h_max),IMG_SIZE[1],IMG_SIZE[0], w2h_ratio=IMG_SIZE[0]/IMG_SIZE[1],p=1) '''4. CutOut Augmentation'''
max_hole_size = int(IMG_SIZE[1]/10)
aug4 = Cutout(p=1,max_h_size=max_hole_size,max_w_size=max_hole_size,num_holes=8 )#default num_holes=8 '''5. SunFlare Augmentation'''
aug5 = RandomSunFlare(src_radius=max_hole_size,num_flare_circles_lower=10,num_flare_circles_upper=20,p=1) '''6. Ultimate Augmentation -- combine everything'''
final_aug = Compose([aug1,aug2,aug3,aug4,aug5],p=1) img1 = albaugment(aug1,image1)
img2 = albaugment(aug1,image1)
print('Rotate or Flip')
show_Nimages([image1,img1,img2],scale=2)
# time.sleep(1) img1 = albaugment(aug2,image1)
img2 = albaugment(aug2,image1)
img3 = albaugment(aug2,image1)
print('Brightness or Contrast')
show_Nimages([img3,img1,img2],scale=2)
# time.sleep(1) img1 = albaugment(aug3,image1)
img2 = albaugment(aug3,image1)
img3 = albaugment(aug3,image1)
print('Rotate and Resize')
show_Nimages([img3,img1,img2],scale=2)
print(img1.shape,img2.shape)
# time.sleep(1) img1 = albaugment(aug4,image1)
img2 = albaugment(aug4,image1)
img3 = albaugment(aug4,image1)
print('CutOut')
show_Nimages([img3,img1,img2],scale=2)
# time.sleep(1) img1 = albaugment(aug5,image1)
img2 = albaugment(aug5,image1)
img3 = albaugment(aug5,image1)
print('Sun Flare')
show_Nimages([img3,img1,img2],scale=2)
# time.sleep(1) img1 = albaugment(final_aug,image1)
img2 = albaugment(final_aug,image1)
img3 = albaugment(final_aug,image1)
print('All above combined')
show_Nimages([img3,img1,img2],scale=2)
print(img1.shape,img2.shape)
aug_list = [aug5, aug2, aug3, aug4, aug1, final_aug]
aug_name = ['SunFlare', 'brightness or contrast', 'crop and resized', 'CutOut', 'rotate or flip', 'Everything Combined'] idx=8
layer_name = 'relu'
for i in range(len(aug_list)):
path=f"F:\\kaggleDataSet\\diabeticRetinopathy\\resized test 19\\"+str(row["id_code"])+".jpg"
input_img = np.empty((1,224, 224, 3), dtype=np.uint8)
input_img[0,:,:,:] = preprocess_image(path)
aug_img = albaugment(aug_list[i],input_img[0,:,:,:])
ben_img = transform_image_ben(aug_img)
print('test pic no.%d -- augmentation: %s' % (i+1, aug_name[i]))
_ = gen_heatmap_img(aug_img,model, layer_name=layer_name,viz_img=ben_img,orig_img=input_img[0])
吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(完整版)的更多相关文章
- 吴裕雄--天生自然 PYTHON数据分析:所有美国股票和etf的历史日价格和成交量分析
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...
- 吴裕雄--天生自然 python数据分析:健康指标聚集分析(健康分析)
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...
- 吴裕雄--天生自然 python数据分析:葡萄酒分析
# import pandas import pandas as pd # creating a DataFrame pd.DataFrame({'Yes': [50, 31], 'No': [101 ...
- 吴裕雄--天生自然 PYTHON数据分析:人类发展报告——HDI, GDI,健康,全球人口数据数据分析
import pandas as pd # Data analysis import numpy as np #Data analysis import seaborn as sns # Data v ...
- 吴裕雄--天生自然 python数据分析:医疗费数据分析
import numpy as np import pandas as pd import os import matplotlib.pyplot as pl import seaborn as sn ...
- 吴裕雄--天生自然 PYTHON语言数据分析:ESA的火星快车操作数据集分析
import os import numpy as np import pandas as pd from datetime import datetime import matplotlib imp ...
- 吴裕雄--天生自然 python语言数据分析:开普勒系外行星搜索结果分析
import pandas as pd pd.DataFrame({'Yes': [50, 21], 'No': [131, 2]}) pd.DataFrame({'Bob': ['I liked i ...
- 吴裕雄--天生自然 PYTHON数据分析:基于Keras的CNN分析太空深处寻找系外行星数据
#We import libraries for linear algebra, graphs, and evaluation of results import numpy as np import ...
- 吴裕雄--天生自然 python数据分析:基于Keras使用CNN神经网络处理手写数据集
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mp ...
随机推荐
- Codeforces_712_B
http://codeforces.com/problemset/problem/712/B 水,判断奇偶即可. #include<iostream> #include<string ...
- 牛客练习赛52 C 烹饪(容斥+扩展欧几里得)
来源:https://ac.nowcoder.com/acm/contest/1084/D 思路来源:https://www.cnblogs.com/Morning-Glory/p/11521114. ...
- git命令清单 摘自 阮老师
常用 Git 命令清单 作者: 阮一峰 日期: 2015年12月 9日 我每天使用 Git ,但是很多命令记不住. 一般来说,日常使用只要记住下图6个命令,就可以了.但是熟练使用,恐怕要记住60- ...
- 《java多线程编程核心技术》不使用等待通知机制 实现线程间通信的 疑问分析
不使用等待通知机制 实现线程间通信的 疑问分析 2018年04月03日 17:15:08 ayf 阅读数:33 编辑 <java多线程编程核心技术>一书第三章开头,有如下案例: ...
- Spring Boot从入门到精通(二)配置GitHub并上传Maven项目
简单介绍一下GitHub,它是一个面向开源及私有软件项目的托管平台,因为只支持git作为唯一的版本库格式进行托管,故名GitHub. GitHub于2008年4月10日正式上线,除了Git代码仓库托管 ...
- VFP9.0的GDI+类的使用
GDI+你应该不会陌生吧,然而,在VFP里要使用这一技术,可不是一件容易的事,你得学习一大堆API函数.或许,一想到这,你已经望而却步了.不过,从现在起,这一技术不再是豪门旺族的专宠了,我们每一位Fo ...
- DeBug Python神级工具PySnooper
安装 pip3 install pysnooper import pysnooper @pysnooper.snoop() def number_to_bits(number): if number: ...
- 在Linux安装MySQL
yum 方式卸载MySQL与安装MySQL . rpm -qa | grep -i mysql命令查看已经安装过的组件 [root@VM_0_10_centos ~]# rpm -qa | grep ...
- CNN目标检测系列算法发展脉络——学习笔记(一):AlexNet
在咨询了老师的建议后,最近开始着手深入的学习一下目标检测算法,结合这两天所查到的资料和个人的理解,准备大致将CNN目标检测的发展脉络理一理(暂时只讲CNN系列部分,YOLO和SSD,后面会抽空整理). ...
- Http2优点
1.信道复用 2.分帧传输 3.Server Push Http/1.1与Http/2对比网站: https://http2.akamai.com/demo https://http2.akamai. ...