【NLP_Stanford课堂】词形规范化
一、为什么要规范化
在做信息检索的时候,一般都是精确匹配,如果不做规范化,难以做查询,比如用U.S.A去检索文本,结果文本里实际上存的是USA,那么实际上应该能查到的结果查不到了。
所以需要对所有内容做规范化,以实现检索的有效性。
二、怎么规范化
- 大小写转换
- 在信息检索的应用上,通常将大写字母转换成小写字母,因为用户更倾向于使用小写字母
- 例外情况:当大写字母出现在句子的中间的时候,一般有特殊意义,不能转换,比如是某个机构的缩写
- 对于情感分析、机器翻译或者信息抽取,大写字母一般都非常重要,不能转换成小写,比如US和us
- 词形还原
- 减少基本形式的不同形态,比如:am, are, is ->be ; car, cars car's -> car
- 重点:找到词典中的正确的中心词,这对机器翻译来说尤为重要
- 形态学:找到词素(组成单词的有意义的最小单元),词素主要由以下两种组成
- 词根:核心的意义的承载单元
- 词缀:词根的附着片段,通常有语法功能
- Steming:在信息检索中,将单词粗切掉词缀,只保留词根。
- 英语中最通用的算法:Porter's 算法(使用简单的替换规则)

在去掉(*v*)ing时只有当(*v*)中含有元音时才去掉
【NLP_Stanford课堂】词形规范化的更多相关文章
- 【NLP_Stanford课堂】情感分析
一.简介 实例: 电影评论.产品评论是positive还是negative 公众.消费者的信心是否在增加 公众对于候选人.社会事件等的倾向 预测股票市场的涨跌 Affective States又分为: ...
- 【NLP_Stanford课堂】文本分类2
一.实验评估参数 实验数据本身可以分为是否属于某一个类(即correct和not correct),表示本身是否属于某一类别上,这是客观事实:又可以按照我们系统的输出是否属于某一个类(即selecte ...
- 【NLP_Stanford课堂】文本分类1
文本分类实例:分辨垃圾邮件.文章作者识别.作者性别识别.电影评论情感识别(积极或消极).文章主题识别及任何可分类的任务. 一.文本分类问题定义: 输入: 一个文本d 一个固定的类别集合C={c1,c2 ...
- 【NLP_Stanford课堂】拼写校正
在多种应用比如word中都有拼写检查和校正功能,具体步骤分为: 拼写错误检测 拼写错误校正: 自动校正:hte -> the 建议一个校正 建议多个校正 拼写错误类型: Non-word Err ...
- 【NLP_Stanford课堂】语言模型4
平滑方法: 1. Add-1 smoothing 2. Add-k smoothing 设m=1/V,则有 从而每一项可以跟词汇表的大小相关 3. Unigram prior smoothing 将上 ...
- 【NLP_Stanford课堂】语言模型3
一.产生句子 方法:Shannon Visualization Method 过程:根据概率,每次随机选择一个bigram,从而来产生一个句子 比如: 从句子开始标志的bigram开始,我们先有一个( ...
- 【NLP_Stanford课堂】语言模型2
一.如何评价语言模型的好坏 标准:比起语法不通的.不太可能出现的句子,是否为“真实”或"比较可能出现的”句子分配更高的概率 过程:先在训练数据集上训练模型的参数,然后在测试数据集上测试模型的 ...
- 【NLP_Stanford课堂】语言模型1
一.语言模型 旨在:给一个句子或一组词计算一个联合概率 作用: 机器翻译:用以区分翻译结果的好坏 拼写校正:某一个拼错的单词是这个单词的概率更大,所以校正 语音识别:语音识别出来是这个句子的概率更大 ...
- 【NLP_Stanford课堂】最小编辑距离
一.什么是最小编辑距离 最小编辑距离:是用以衡量两个字符串之间的相似度,是两个字符串之间的最小操作数,即从一个字符转换成另一个字符所需要的操作数,包括插入.删除和置换. 每个操作数的cost: 每个操 ...
随机推荐
- java中获得对象的方法
- ssh设置超时时间
修改server端的etc/ssh/sshd_config ClientAliveInterval 60 #server每隔60秒发送一次请求给client,然后client响应,从而保持连接 Cli ...
- like模糊查询%注入问题
android like 全局模糊查找文件命名 通过条件通过 like %search% 如果查找的关键字是% 那么就成了 like %%% 就会查找出所有的文件 解决办法是先把正则里面的匹配符 替换 ...
- python 获取子目录下的所有文件的路径
import os pathss=[] for root, dirs, files in os.walk(tarpath): path = [os.path.join(root, name) for ...
- js、css的阻塞问题
js.css的阻塞问题 这篇文章主要是探索js.css的加载顺序及其影响问题. 下面的代码可以让浏览器阻塞: <!DOCTYPE html> <html lang="en& ...
- zookeeper 节点信息
使用get命令获取指定节点的数据时, 同时也将返回该节点的状态信息, 称为Stat. 其包含如下字段: czxid. 节点创建时的zxid. mzxid. 节点最新一次更新发生时的zxid. ctim ...
- android AIDL服务
这篇文章http://byandby.iteye.com/blog/1026110我们介绍了android的本地服务:它只能由承载它的应用程序使用.现在我们将介绍如何构建可由其他进程通过 RPC 使用 ...
- log4j 2整理
# Log4j 2最佳实践 #Log4j的1.x版本已经被广泛使用于很多应用程序中.然而,它这些年的发展已经放缓.它变得越来越难以维护,因为它需要严格遵循很老的Java版本,并在2015年8月寿终正寝 ...
- 九度oj题目1181:遍历链表
题目1181:遍历链表 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2600 解决:1125 题目描述: 建立一个升序链表并遍历输出. 输入: 输入的每个案例中第一行包括1个整数:n(1 ...
- IBM Rational Appscan: Part 2 ---reference
http://resources.infosecinstitute.com/appscan-part-2/ By Rohit T|August 16th, 2012 ----------------- ...