poj 1265 Area(pick定理)
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 4373 | Accepted: 1983 |
Description
Figure 1: Example area.
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.
Input
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units.
Output
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0 给一个n边形,求出其内部整点数I,边界上整点数E以及其面积s;
根据pick定理有s = I+E/2-1;所以先求出多边形面积和E,I就可以得出了;

#include<stdio.h>
#include<istream>
#include<algorithm>
#include<math.h>
using namespace std; const int N = ;
struct Point//定义点
{
double x,y;
Point() {}
Point (double a,double b):x(a),y(b) {}
} p[N]; double det(const Point &a,const Point &b)
{
return(a.x*b.y-a.y*b.x);
}//计算两个向量的叉积; int gcd(int a, int b)
{
return b == ?a:gcd(b,a%b);
} int main()
{
int test, item;
scanf("%d",&test);
for(item = ; item <= test; item++)
{
int n;
scanf("%d",&n);
int x,y,num = ;
p[].x = ;
p[].y= ;
for(int i = ; i <= n; i++)
{
scanf("%d %d",&x,&y); num += gcd(abs(x),abs(y));//多边形边界上整点数; p[i].x = p[i-].x + x;
p[i].y = p[i-].y + y;
} double sum=;
for(int i=; i<n; i++)
sum+=det(p[i],p[i+]); printf("Scenario #%d:\n",item);
printf("%d %d %.1lf\n",int(sum/2.0)+-(num/),num,sum/);
printf("\n");
}
}
poj 1265 Area(pick定理)的更多相关文章
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- POJ 1265 Area (Pick定理 & 多边形面积)
题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...
- [poj 1265]Area[Pick定理][三角剖分]
题意: 给出机器人移动的向量, 计算包围区域的内部整点, 边上整点, 面积. 思路: 面积是用三角剖分, 边上整点与GCD有关, 内部整点套用Pick定理. S = I + E / 2 - 1 I 为 ...
- poj 1265 Area( pick 定理 )
题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标 变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...
- Area - POJ 1265(pick定理求格点数+求多边形面积)
题目大意:以原点为起点然后每次增加一个x,y的值,求出来最后在多边形边上的点有多少个,内部的点有多少个,多边形的面积是多少. 分析: 1.以格子点为顶点的线段,覆盖的点的个数为GCD(dx,dy),其 ...
- poj 1265 Area 面积+多边形内点数
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5861 Accepted: 2612 Description ...
- POJ 1265 Area POJ 2954 Triangle Pick定理
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5227 Accepted: 2342 Description ...
- poj 1265 Area(Pick定理)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5666 Accepted: 2533 Description ...
- POJ 1265 Area (pick定理)
题目大意:已知机器人行走步数及每一步的坐标变化量,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:叉积求面积,pick定理求点. pick定理:面积=内部点数+边上点数/2-1 ...
随机推荐
- java的继承机制
这次我想深入探究以下java里类的继承机制. 我们知道,继承是java设计里的一个失败的地方.高司令说过:如果让他重新设计java的话,他会把继承去掉.而java里继承到底怎么了,会这么不 ...
- Javascript绝句欣赏
1. 取整同时转成数值型: '10.567890'|0 结果: 10 '10.567890'^0 结果: 10 -2.23456789|0 结果: -2 ~~-2.23456789 结果: -2 2. ...
- 【bzoj2938】[Poi2000]病毒
题目描述 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码段,试问,是否 ...
- webGIS(离线版)研究路线归总
特注:不做详解,说明网上资源很多,找一篇,照着走一遍即可. 1.数据源要满足开源.Free且地理信息要完善 几经周折,选择了OSM,具体信息可以去其官方查看(它竟然把中国一分为二,大陆.台湾,坑爹!! ...
- HTML5 文件域+FileReader 读取文件(二)
一.读取文本文件内容,指定字符编码 <div class="container"> <!--文本文件验证--> <input type="f ...
- mysql数据库优化日志(更)-howyue
1)记一次首页查询优化 优化前: 优化后: 主要优化: 1.select查询只查询需要字段: 2.where条件字段添加索引:
- Wpf自定义路由事件
创建自定义路由事件大体可以分为三个步骤: ①声明并注册路由事件. ②为路由事件添加CLR事件包装. ③创建可以激发路由事件的方法. 以ButtonBase类中代码为例展示这3个步骤: public a ...
- 使用IDEA,利用SpringMVC框架建立HelloWorld项目
无论是从头开始学习一门新的语言还是技术,我们的入门都是从HelloWorld开始,也许就是因为这样,我在学习Spring MVC的时候,就有一种偏执,一定要写出一个HelloWorld来.研究了好久, ...
- SGU 117.Counting
时间限制: 0.25 sec. 空间限制: 4096 KB 题目大意: 给你n,m,k(都小于10001),和 n 个数,求这n个数中有多少个数的m次幂能够整除k.(即 n i^m % k==0). ...
- 【Ural1057】幂和的数量
[题目描述] 写一个程序来计算区间[X,Y]内满足如下条件的整数个数:它恰好等于K个互不相等的B的整数幂之和. 举个例子.令X=15,Y=20,K=2,B=2.在这个例子中,区间[15,20]内有3个 ...