吴裕雄 python深度学习与实践(15)
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True) x_data = tf.placeholder("float32", [None, 784])
weight = tf.Variable(tf.ones([784, 10]))
bias = tf.Variable(tf.ones([10]))
y_model = tf.nn.softmax(tf.matmul(x_data, weight) + bias)
y_data = tf.placeholder("float32", [None, 10]) loss = tf.reduce_sum(tf.pow((y_model - y_data), 2)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init) for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x_data:batch_xs, y_data:batch_ys})
if _ % 50 == 0:
correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x_data: mnist.test.images, y_data: mnist.test.labels}))

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True) x_data = tf.placeholder("float32", [None, 784])
weight = tf.Variable(tf.ones([784, 10]))
bias = tf.Variable(tf.ones([10]))
y_model = tf.nn.relu(tf.matmul(x_data, weight) + bias)
y_data = tf.placeholder("float32", [None, 10])
loss = -tf.reduce_sum(y_data*tf.log(y_model)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init) for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(50)
sess.run(train_step, feed_dict={x_data:batch_xs, y_data:batch_ys})
if _ % 50 == 0:
correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x_data: mnist.test.images, y_data: mnist.test.labels}))

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True) x_data = tf.placeholder("float32", [None, 784]) weight1 = tf.Variable(tf.ones([784, 256]))
bias1 = tf.Variable(tf.ones([256]))
y1_model1 = tf.matmul(x_data, weight1) + bias1 weight2 = tf.Variable(tf.ones([256, 10]))
bias2 = tf.Variable(tf.ones([10]))
y_model = tf.nn.softmax(tf.matmul(y1_model1, weight2) + bias2) y_data = tf.placeholder("float32", [None, 10]) loss = -tf.reduce_sum(y_data*tf.log(y_model))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init) for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(50)
sess.run(train_step, feed_dict={x_data:batch_xs, y_data:batch_ys})
if _ % 50 == 0:
correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x_data: mnist.test.images, y_data: mnist.test.labels}))

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True) x_data = tf.placeholder("float32", [None, 784])
x_image = tf.reshape(x_data, [-1,28,28,1]) w_conv = tf.Variable(tf.ones([5,5,1,32]))
b_conv = tf.Variable(tf.ones([32]))
h_conv = tf.nn.relu(tf.nn.conv2d(x_image, w_conv, strides=[1, 1, 1, 1], padding='SAME') + b_conv) h_pool = tf.nn.max_pool(h_conv, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') w_fc = tf.Variable(tf.ones([14*14*32,1024]))
b_fc = tf.Variable(tf.ones([1024])) h_pool_flat = tf.reshape(h_pool, [-1, 14*14*32])
h_fc = tf.nn.relu(tf.matmul(h_pool_flat, w_fc) + b_fc) W_fc2 = tf.Variable(tf.ones([1024,10]))
b_fc2 = tf.Variable(tf.ones([10])) y_model = tf.nn.softmax(tf.matmul(h_fc, W_fc2) + b_fc2) y_data = tf.placeholder("float32", [None, 10]) loss = -tf.reduce_sum(y_data*tf.log(y_model))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init) for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(200)
sess.run(train_step, feed_dict={x_data:batch_xs, y_data:batch_ys})
if _ % 50 == 0:
correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x_data: mnist.test.images, y_data: mnist.test.labels}))

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True) x_data = tf.placeholder("float", shape=[None, 784])
y_data = tf.placeholder("float", shape=[None, 10]) def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='VALID') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x_data, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([4 * 4 * 64, 1024])
b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 4*4*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = -tf.reduce_sum(y_data * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-2).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_data, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess = tf.Session()
sess.run(tf.initialize_all_variables()) for i in range(1000):
batch = mnist.train.next_batch(50)
if i%5 == 0:
train_accuracy = sess.run(accuracy, feed_dict={x_data:batch[0], y_data: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
sess.run(train_step, feed_dict={x_data: batch[0], y_data: batch[1], keep_prob: 0.5})

吴裕雄 python深度学习与实践(15)的更多相关文章
- 吴裕雄 python深度学习与实践(13)
import numpy as np import matplotlib.pyplot as plt x_data = np.random.randn(10) print(x_data) y_data ...
- 吴裕雄 python深度学习与实践(18)
# coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle impo ...
- 吴裕雄 python深度学习与实践(17)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输 ...
- 吴裕雄 python深度学习与实践(16)
import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = n ...
- 吴裕雄 python深度学习与实践(14)
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_dat ...
- 吴裕雄 python深度学习与实践(12)
import tensorflow as tf q = tf.FIFOQueue(,"float32") counter = tf.Variable(0.0) add_op = t ...
- 吴裕雄 python深度学习与实践(11)
import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6 ...
- 吴裕雄 python深度学习与实践(10)
import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print ...
- 吴裕雄 python深度学习与实践(9)
import numpy as np import tensorflow as tf inputX = np.random.rand(100) inputY = np.multiply(3,input ...
随机推荐
- CDMA码片序列问题
要想知道到底是怎么算的 建议看见这篇博客的任何一位去先看一下这篇博客:https://blog.csdn.net/dog250/article/details/6420427 在CDMA中.每一个比特 ...
- Unity动画机制 Animator与Animator Controller教程
Unity动画机制Animator 本文提供全流程,中文翻译. Chinar 坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) Chinar -- ...
- Tomcat下载和安装
一.Tomcat下载和安装 Tomcat 是一个免费的开放源代码的 Servlet 容器,它是 Apache 软件基金会的一个顶级项目,由 Apache,Sun和其他一些公司及个人共同开发而成.由于有 ...
- (转)python logging模块
python logging模块 原文:http://www.cnblogs.com/dahu-daqing/p/7040764.html 1 logging模块简介 logging模块是Python ...
- Golang 之 interface接口全面理解
什么是interface 在面向对象编程中,可以这么说:“接口定义了对象的行为”, 那么具体的实现行为就取决于对象了. 在Go中,接口是一组方法签名(声明的是一组方法的集合).当一个类型为接口中的所有 ...
- 哈密顿绕行世界问题、n皇后问题
哈密顿绕行世界问题 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- c++11 function_typetraits备忘
function traits. 获取函数或成员函数的返回类型,参数类型,参数长度,类类型. 函数参数列表推断基于typelist:http://www.cnblogs.com/flytrace/p/ ...
- WIN7 WIN10赋予文件或者文件夹完全访问权限
WIN7 WIN10赋予文件或者文件夹完全访问权限win7文件夹图标中多了一把小锁打不开文件夹怎么办?解决办法一:右击目录→取得管理员权限!该方法适用于win7旗舰版.解决办法二:添加everyone ...
- 算法实践--最长公共子序列(Longest Common Subsquence)
什么是最长公共子序列 X=ACCG Y=CCAGCA 长度为1的公共子序列: {A} {C} {G} 长度为2的公共子序列:{AC} {CC} {CG} {AG} 长度为3的公共子序列:{ACG} 长 ...
- vld for memory leak detector (release version)
有没有这样的情况,无法静态的通过启动和退出来查找内存泄露,比如网络游戏,你总不能直接关游戏那玩家怎么办? 现在vld支持release,我们可以动态的找. 1.在release版本使用vld了.< ...