OpenCV---圆检测
推文:Opencv2.4.9源码分析——HoughCircles




霍夫圆检测
加载一幅图像并对其模糊化以降噪
对模糊化后的图像执行霍夫圆变换 .
在窗体中显示检测到的圆.
def detect_circle_demo(image):
# dst = cv.bilateralFilter(image, , , ) #高斯双边模糊,不太好调节,霍夫噪声敏感,所以要先消除噪声
# cv.imshow("",dst)
# dst = cv.pyrMeanShiftFiltering(image,,) #均值迁移,EPT边缘保留滤波,霍夫噪声敏感,所以要先消除噪声
# cv.imshow("", dst)
dst = cv.GaussianBlur(image,(,),) #使用高斯模糊,修改卷积核ksize也可以检测出来
# cv.imshow("", dst)
gray = cv.cvtColor(dst,cv.COLOR_BGR2GRAY)
circles = cv.HoughCircles(gray,cv.HOUGH_GRADIENT,1,20,param1=50,param2=30,minRadius=0,maxRadius=0)
circles = np.uint16(np.around(circles)) #around对数据四舍五入,为整数
for i in circles[,:]:
cv.circle(image,(i[],i[]),i[],(,,),)
cv.circle(image,(i[],i[]),,(,,),) #圆心 cv.imshow("detect_circle_demo",image) src = cv.imread("./c.png") #读取图片
cv.namedWindow("input image",cv.WINDOW_AUTOSIZE) #创建GUI窗口,形式为自适应
cv.imshow("input image",src) #通过名字将图像和窗口联系 detect_circle_demo(src) cv.waitKey() #等待用户操作,里面等待参数是毫秒,我们填写0,代表是永远,等待用户操作
cv.destroyAllWindows() #销毁所有窗口

相关知识补充:
(一)HoughCircles方法
.加载一幅图像
.执行高斯模糊以降低噪声:GaussianBlur
.转成灰度图:cvtColor
.执行霍夫圆变换:HoughCircles
def HoughCircles(image, method, dp, minDist, circles=None, param1=None, param2=None, minRadius=None, maxRadius=None): # real signature unknown; restored from __doc__
cv.HoughCircles(gray,cv.HOUGH_GRADIENT,,,param1=,param2=,minRadius=,maxRadius=)
.image:输入图像 (灰度图)
.method:指定检测方法. 现在OpenCV中只有霍夫梯度法
.dp:累加器图像的反比分辨=1即可默认
.minDist = src_gray.rows/: 检测到圆心之间的最小距离,这是一个经验值。这个大了,那么多个圆就是被认为一个圆。
.param_1 = : Canny边缘函数的高阈值
.param_2 = : 圆心检测阈值.根据你的图像中的圆大小设置,当这张图片中的圆越小,那么此值就设置应该被设置越小。当设置的越小,那么检测出的圆越多,在检测较大的圆时则会产生很多噪声。所以要根据检测圆的大小变化。
.min_radius = : 能检测到的最小圆半径, 默认为0.
.max_radius = : 能检测到的最大圆半径, 默认为0
OpenCV---圆检测的更多相关文章
- Python+OpenCV图像处理(十五)—— 圆检测
简介: 1.霍夫圆变换的基本原理和霍夫线变换原理类似,只是点对应的二维极径.极角空间被三维的圆心和半径空间取代.在标准霍夫圆变换中,原图像的边缘图像的任意点对应的经过这个点的所有可能圆在三维空间用圆心 ...
- OpenCV——霍夫变换(直线检测、圆检测)
x #include <opencv2/opencv.hpp> #include <iostream> #include <math.h> using namesp ...
- OpenCV 学习笔记03 直线和圆检测
检测边缘和轮廓不仅重要,还经常用到,它们也是构成其他复杂操作的基础. 直线和形状检测与边缘和轮廓检测有密切的关系. 霍夫hough 变换是直线和形状检测背后的理论基础.霍夫变化是基于极坐标和向量开展的 ...
- 【python+opencv】直线检测+圆检测
Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进 ...
- opencv python:直线检测 与 圆检测
霍夫直线变换介绍 霍夫圆检测 现实中: example import cv2 as cv import numpy as np # 关于霍夫变换的相关知识可以看看这个博客:https://blog.c ...
- python实现圆检测
目录: (一)霍夫圆检测原理 (二)代码实现 (一)霍夫圆检测原理 (二)代码实现 1 #霍夫圆检测 2 import cv2 as cv 3 import numpy as np 4 5 def d ...
- opencv直线检测在c#、Android和ios下的实现方法
opencv直线检测在c#.Android和ios下的实现方法 本文为作者原创,未经允许,不得转载 :原文由作者发表在博客园:http://www.cnblogs.com/panxiaochun/p/ ...
- OPENCV条形码检测与识别
条形码是当前超市和部分工厂使用比较普遍的物品,产品标识技术,使用摄像头检测一张图片的条形码包含有两个步骤,第一是定位条形码的位置,定位之后剪切出条形码,并且识别出条形码对应的字符串,然后就可以调用网络 ...
- OpenCV矩形检测
OpenCV矩形检测 需求:提取图像中的矩形,图像存在污染现象,即矩形区域不是完全规则的矩形. 思路一:轮廓法 OpenCV里提取目标轮廓的函数是findContours,它的输入图像是一幅二值图像, ...
- keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)
引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节 ...
随机推荐
- KETTLE并行
1.转换的并行 转换的并行是改变复制的数量 上面的转换相当于下面的: 实际是把一个任务拆成三部分执行,相当于在一个数据库连接中做了三次查询,数据库连接的开销没有增加,但是有三个进程一起执行. 2.jo ...
- java 数据存储
简单的记录一下而已. 1.寄存器: 特点:快,存储有限. 存储地点:处理器内部. 2.堆栈 特点:仅次于寄存器快,通过堆栈指针在处理器获取支持.堆栈指针下移,分配内存,上移,释放内存.此外须知生命周期 ...
- Base64编码图片存取与前台显示
需求:将Base64编码图片以BLOB类型存入数据库,需要时取出显示 后台: String base64str=new String(log.getRequest_imgdata());//log为实 ...
- 贪吃蛇GUI Prototype
- Java中的Object类的toString()方法,equals()方法
Object类是所有类的父类,若没有明确使用extends关键字明确表示该类继承哪个类,那么它就默认继承Object类,也就可以使用Object中的方法: 1.toString 如果输出一个对象的时候 ...
- 解决Ubuntu16.04 fatal error: json/json.h: No such file or directory
参考博客 错误产生 安装json-c库之后,根据GitHub上面的readme文件链接到json-c库时出现以下错误: SDMBNJson.h:9:23: fatal error: json/json ...
- 让程序运行更加面向用户——电梯V2.1
电梯V2.1 GitHub仓库地址 Problem 为程序添加命令行参数(自行利用搜索引擎进行学习). 写成 .cpp .h 文件分离的形式(大多数同学已经达到). 继续完善函数分离.模块化思想. 要 ...
- gearman参数说明
-b, –backlog=BACKLOG 连接请求队列的最大值 -d, –daemon Daemon 守护进程化 -f, –file-descriptors=FDS 可打开的文件描述符数量 -h, – ...
- JS扫雷原理性代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- word批量转pdf文件快捷方法。
最近在工作中因为要遇到大量的Word文件转化为PDF文件来实现平台的迁移.但是由于文件太多,手动很费力,想到了用代码的方式: 复制下面的代码,保存的记事本,另存为vbs文件:然后把这个vbs文件放到你 ...