题解-洛谷P4139 上帝与集合的正确用法
\(T\) 组数据,每次给定 \(p\),求
\[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p
\]
数据范围:\(1\le T\le 1000\),\(1\le p\le 10^7\)。
这篇题解主要是给自己看的,因为小蒟蒻从未见过这种骚操作。
首先这个式子虽是无限的,但是答案是固定的。
- 先来几个引理
\]
\]
所以上面那个递归式可以转化:
\]
所以可以先求 \(\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod \varphi(p)\),又可以先求 \(\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod \varphi(\varphi(p))\)……最终一直递归下去。
\begin{cases}
\varphi(1)=1\\
\varphi(p)<p&p>1\\
\end{cases}\\
\therefore \varphi(\varphi(\varphi(\cdots\varphi(p)\cdots)))=1\\
\]
因为 \(\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod 1=0\),所以递归有边界了,可以开码了。
时间复杂度 \(\Theta({\rm max}p+T\log^2 p)\)。
- 代码:
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x(a) a.first
#define y(a) a.second
#define b(a) a.begin()
#define e(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
//Data
const int N=1e7;
//Sieve
bitset<N+7> np;
int phi[N+7];
vector<int> pr;
void Sieve(){
np[1]=phi[1]=1;
for(int i=2;i<=N;i++){
if(!np[i]) pr.pb(i),phi[i]=i-1;
for(int p:pr)if(i*p<=N){
np[i*p]=1;
if(i%p==0){phi[i*p]=phi[i]*p;break;}
phi[i*p]=phi[i]*phi[p];
} else break;
}
}
//Pow
int Pow(int a,int x,int mod){
if(a==0) return 0; int res=1;
for(;x;a=1ll*a*a%mod,x>>=1)if(x&1) res=1ll*res*a%mod;
return res;
}
int Jump(int p){ // 两行核心代码
if(p==1) return 0;
return Pow(2,Jump(phi[p])+phi[p],p);
}
//Main
int main(){
int t; scanf("%d",&t);
Sieve();
for(int ti=1;ti<=t;ti++){
int p; scanf("%d",&p);
printf("%d\n",Jump(p));
}
return 0;
}
祝大家学习愉快!
题解-洛谷P4139 上帝与集合的正确用法的更多相关文章
- 洛谷 P4139 上帝与集合的正确用法 解题报告
P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...
- 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...
- 洛谷 P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- [洛谷P4139]上帝与集合的正确用法
题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>> ...
- 洛谷P4139 上帝与集合的正确用法 拓欧
正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) ) ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩 ...
- 【洛谷】P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天,上帝创造了一个世界的基本元素,称做“元”. 第二天,上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- P4139 上帝与集合的正确用法
本题是欧拉定理的应用.我这种蒟蒻当然不知道怎么证明啦! 那么我们就不证明了,来直接看结论: ab≡⎧⎩⎨⎪⎪ab%φ(p)abab%φ(p)+φ(p)gcd(a,p)=1gcd(a,p)≠1,b< ...
- Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925
题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...
- luogu P4139 上帝与集合的正确用法(扩展欧拉定理)
本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...
随机推荐
- JAVA 去除字符串前后的指定字符
为了显示效果更好,我们可以将多余的字符去掉,代码如下: /** *去掉字符串前后的指定字符 */ public static String trimBothChars(String str, Stri ...
- 图解 Spring 循环依赖,写得太好了!
Spring如何解决的循环依赖,是近两年流行起来的一道Java面试题. 其实笔者本人对这类框架源码题还是持一定的怀疑态度的. 如果笔者作为面试官,可能会问一些诸如"如果注入的属性为null, ...
- C#实现SM2国密加密
本文主要讲解"国密加密算法"SM系列的C#实现方法,不涉及具体的算法剖析,在网络上找到的java实现方法比较少,切在跨语言加密解密上会存在一些问题,所以整理此文志之.JAVA实现参 ...
- 【Azure Redis 缓存 Azure Cache For Redis】使用Redis自带redis-benchmark.exe命令测试Azure Redis的性能
问题描述 关于Azure Redis的性能问题,在官方文档中,可以查看到不同层级Redis的最大连接数,每秒处理请求的性能. 基本缓存和标准缓存 C0 (250 MB) 缓存 - 最多支持 256 个 ...
- mock模拟接口返回数据
mock,是python中模拟接口返回数据 1.安装 pip install mock import unittest from mock import Mock def add(a,b): pass ...
- MarkDown学习总结-2020.05.11
1.使用工具 1.1Typora 官网地址:https://www.typora.io/ 下载链接 2.基础入门 注意: []中的内容则是对应格式的标记符,默认全部标识符后面需要多加一个空格才能生效. ...
- vulnhub: DC 2
首先地址探测找到主机IP: root@kali:~# nmap -sn 192.168.74.139/24 Starting Nmap 7.80 ( https://nmap.org ) at 202 ...
- linux命令 ——netstat
作用: 能查到与客户端链接状态和数量 netstat各选项参数说明: -a : 列出所有连接,服务监听,Socket信息 -c : 持续列出网络状态 #每隔一秒输出网络信息 -t : 显示TCP端口 ...
- Java基础教程——运算符
运算符 算术运算符 加 减 乘 除 取余 自加 自减 + - * / % ++ -- public class 算术运算符 { public static void main(String[] arg ...
- 心跳event
在通过sessionID和passwd获取会话的时候会使原会话断开,后续的事件都变为disconnected,且zk会不断发送disconnected给原连接,connected给新连接