题解-洛谷P4139 上帝与集合的正确用法
\(T\) 组数据,每次给定 \(p\),求
\[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p
\]
数据范围:\(1\le T\le 1000\),\(1\le p\le 10^7\)。
这篇题解主要是给自己看的,因为小蒟蒻从未见过这种骚操作。
首先这个式子虽是无限的,但是答案是固定的。
- 先来几个引理
\]
\]
所以上面那个递归式可以转化:
\]
所以可以先求 \(\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod \varphi(p)\),又可以先求 \(\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod \varphi(\varphi(p))\)……最终一直递归下去。
\begin{cases}
\varphi(1)=1\\
\varphi(p)<p&p>1\\
\end{cases}\\
\therefore \varphi(\varphi(\varphi(\cdots\varphi(p)\cdots)))=1\\
\]
因为 \(\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod 1=0\),所以递归有边界了,可以开码了。
时间复杂度 \(\Theta({\rm max}p+T\log^2 p)\)。
- 代码:
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x(a) a.first
#define y(a) a.second
#define b(a) a.begin()
#define e(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
//Data
const int N=1e7;
//Sieve
bitset<N+7> np;
int phi[N+7];
vector<int> pr;
void Sieve(){
np[1]=phi[1]=1;
for(int i=2;i<=N;i++){
if(!np[i]) pr.pb(i),phi[i]=i-1;
for(int p:pr)if(i*p<=N){
np[i*p]=1;
if(i%p==0){phi[i*p]=phi[i]*p;break;}
phi[i*p]=phi[i]*phi[p];
} else break;
}
}
//Pow
int Pow(int a,int x,int mod){
if(a==0) return 0; int res=1;
for(;x;a=1ll*a*a%mod,x>>=1)if(x&1) res=1ll*res*a%mod;
return res;
}
int Jump(int p){ // 两行核心代码
if(p==1) return 0;
return Pow(2,Jump(phi[p])+phi[p],p);
}
//Main
int main(){
int t; scanf("%d",&t);
Sieve();
for(int ti=1;ti<=t;ti++){
int p; scanf("%d",&p);
printf("%d\n",Jump(p));
}
return 0;
}
祝大家学习愉快!
题解-洛谷P4139 上帝与集合的正确用法的更多相关文章
- 洛谷 P4139 上帝与集合的正确用法 解题报告
P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...
- 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...
- 洛谷 P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- [洛谷P4139]上帝与集合的正确用法
题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>> ...
- 洛谷P4139 上帝与集合的正确用法 拓欧
正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) ) ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩 ...
- 【洛谷】P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天,上帝创造了一个世界的基本元素,称做“元”. 第二天,上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- P4139 上帝与集合的正确用法
本题是欧拉定理的应用.我这种蒟蒻当然不知道怎么证明啦! 那么我们就不证明了,来直接看结论: ab≡⎧⎩⎨⎪⎪ab%φ(p)abab%φ(p)+φ(p)gcd(a,p)=1gcd(a,p)≠1,b< ...
- Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925
题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...
- luogu P4139 上帝与集合的正确用法(扩展欧拉定理)
本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...
随机推荐
- dpkg 批量卸载
dpkg -l |grep deepin|awk '{print $2}'|xargs sudo dpkg -P
- maven项目导出为jar包
1:ctrl + R 输入cmd 2:切换路径到自己的项目路径下 3:执行--> mvn assembly:assembly ( 若显示编码问题: 查看编码方式:chcp 修改编码:chcp ...
- php 进行图片裁剪
<?php $src_path = '1.jpg'; //创建源图的实例 $src = imagecreatefromstring(file_get_contents($src_path)); ...
- windows下mysql的远程访问和权限设置
如果想要用户root可以远程登录,则可通过修改user表中root用户对应的host字段值为"%"即可.我们用以下语句进行修改: update user set host = '% ...
- 不会吧,你连Java 多线程线程安全都还没搞明白,难怪你面试总不过
什么是线程安全? 当一个线程在同一时刻共享同一个全局变量或静态变量时,可能会受到其他线程的干扰,导致数据有问题,这种现象就叫线程安全问题. 为什么有线程安全问题? 当多个线程同时共享,同一个全局变量或 ...
- 使用pdfFactory为PDF文件设定查看选项
一般情况下,大部分PDF文件都会按照默认的查看设置,以100%的尺寸显示第一页的内容.但在一些特殊情况下,PDF文件的创建者会设定其他的文件查看尺寸,或设定打开页为第N页,来达到引起阅读者关注的目的. ...
- 常见的名片尺寸如何在CorelDRAW预设
说到名片想必大家肯定不陌生,是我们生活中随处可见的物品,也是商家宣传必不可少的印刷物料.那么名片的尺寸是多少?我们做名片的时候该如何把握好名片的尺寸呢?在CDR中有专门的名片尺寸,下面小编就为大家简单 ...
- yii2.0 实现城市联动效果
<script type="text/javascript"> function getcitytext(){ citytext = ''; $(".city ...
- C语言讲义——开发工具Dev C++
20世纪60年代,编程语言界发生"结构化程序设计"变革, 丹尼斯·里奇(Dennis Ritchie)& 肯·汤普森(Ken Thompson)发明C语言,率先建立了面向过 ...
- redis 客户端
输入缓冲区: 客户端状态的输入缓冲区用于保存客户端发送的命令请求: typedef struct redisClient{ //... sds querybuf; //... }redisClient ...