【BZOJ3105】[cqoi2013]新Nim游戏

Description

传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。
本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。
如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。

Input

第一行为整数k。即火柴堆数。第二行包含k个不超过109的正整数,即各堆的火柴个数。

Output

输出第一回合拿的火柴数目的最小值。如果不能保证取胜,输出-1。

Sample Input

6
5 5 6 6 5 5

Sample Output

21

HINT

k<=100

题解:又是水题~

结论:Nim游戏先手必胜条件:所有堆的石子个数异或和不为0,否则先手必败。

所以A把除了线性基以外的所有点都拿走就赢了,先从大到小排序在求线性基就能保证线性基最大,也就是答案最小了。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int n;
int v[110],val[110],vis[110];
long long ans;
bool cmp(int a,int b)
{
return a>b;
}
int main()
{
scanf("%d",&n);
int i,j,k;
for(i=1;i<=n;i++) scanf("%d",&v[i]),ans+=v[i];
sort(v+1,v+n+1,cmp);
for(i=1;i<=n;i++) val[i]=v[i];
for(i=1<<30;i;i>>=1)
{
for(j=1;j<=n;j++) if(!vis[j]&&(v[j]&i))
{
k=j,vis[j]=1,ans-=val[j];
break;
}
for(j=1;j<=n;j++) if(j!=k&&(v[j]&i)) v[j]^=v[k];
}
printf("%lld",ans);
return 0;
}

【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基的更多相关文章

  1. bzoj3105 [cqoi2013]新Nim游戏——贪心+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3105 首先,要先手必胜,就不能取后让剩下的火柴中存在异或和为0的子集,否则对方可以取成异或和 ...

  2. BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基

    一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...

  3. 【题解】 bzoj3105: [cqoi2013]新Nim游戏 (线性基+贪心)

    bzoj3105,懒得复制 Solution: 首先你要有一个前置技能:如果每堆石子异或和为\(0\),则先手比输 这题我们怎么做呢,因为我们没人要先取掉几堆,为了赢对方一定会使剩下的异或和为\(0\ ...

  4. 【BZOJ3105】新Nim游戏(线性基)

    [BZOJ3105]新Nim游戏(线性基) 题面 BZOJ Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以 ...

  5. BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论

    BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...

  6. [CQOI2013]新Nim游戏(线性基)

    P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...

  7. bzoj 3105: [cqoi2013]新Nim游戏【线性基+贪心】

    nim游戏的先手必胜条件是所有堆的火柴个数异或和为0,也就是找一个剩下火柴堆数没有异或和为0的子集的方案,且这个方案保证剩下的火柴个数总和最大 然后我就不会了,其实我到现在也不知道拟阵是个什么玩意-- ...

  8. 洛谷P4301 [CQOI2013]新Nim游戏(线性基)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 后手在什么时候能够获胜呢?只有在他能构造出一个子集的异或和为0时(这个应该是nim博弈的结论了吧) 那么为了必胜,我们就要取到没有子集异或和为0为止 ...

  9. BZOJ3105: [cqoi2013]新Nim游戏

    题解: 线性基?类似于向量上的基底. 此题题解戳这里:http://blog.csdn.net/wyfcyx_forever/article/details/39477673 代码: #include ...

随机推荐

  1. 遗传算法解决TSP问题

    1实验环境 实验环境:CPU i5-2450M@2.50GHz,内存6G,windows7 64位操作系统 实现语言:java (JDK1.8) 实验数据:TSPLIB,TSP采样实例库中的att48 ...

  2. testng执行报错:org.testng.TestNGException: Cannot find class in classpath

    org.testng.TestNGException: Cannot find class in classpath 解决办法:project->clean 再次执行正常运行  

  3. NFS网络文件系统的配置

    NFS网络文件系统的配置 NFS网络文件系统 NFS(network file system)网络文件系统.一种使用于分散式文件协定,有SUN公司开发.功能是通过网络让不同的机器.不同的操作系统能够分 ...

  4. python可hash 不可hash类型

    不可变类型是可hash #tuple str freezeset 可变类型是不可hash ##list set

  5. C3:建造者模式 Builder

    将一个复杂对象的创建与表示分离,使得同样的构建过程可以创建不同的表示. 应用场景: A.创建这个对象通常需要较多的参数,才能完整的表示该对象.B.类的各个组成部分的具体实现类或算法经常面临变化,但将他 ...

  6. windows新建或者重命名文件及目录必须手动刷新才干显示出来问题解决方法

     首先推断注冊表中HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Update\UpdateMode值是否为0,该值若为1表示手工刷新, 该 ...

  7. Django内建模版标签和过滤器

    第四章列出了许多的常用内建模板标签和过滤器.然而,Django自带了更多的内建模板标签及过滤器.这章附录列出了截止到编写本书时,Django所包含的各个内建模板标签和过滤器,但是,新的标签是会被定期地 ...

  8. 初窥Servlet

    1. Servlet简介 Servlet是sun公司提供的一门用于开发动态web资源的技术.sun公司在其API中提供了一个servlet接口,用户若想要发一个动态web资源,只需要完成以下两步即可: ...

  9. msyql5.5修改配置文件开启慢查询日志

    修改/etc/my.cnf文件 在[mysqld]下面修改或添加配置(在别处不起作用) slow_query_log = on slow_query_log_file = /usr/local/mys ...

  10. JSTL JSP页面推断某个cookie的值和读取值....

    <c:if test="${cookie['woshop'].value eq '1'}">                 <div>           ...