【bzoj4596】[Shoi2016]黑暗前的幻想乡 容斥原理+矩阵树定理
题目描述
给出 $n$ 个点和 $n-1$ 种颜色,每种颜色有若干条边。求这张图多少棵每种颜色的边都出现过的生成树,答案对 $10^9+7$ 取模。
输入
输出
样例输入
4
2 3 2 4 2
5 2 1 3 1 3 2 4 1 4 3
4 2 1 3 2 4 1 4 2
样例输出
17
题解
容斥原理+矩阵树定理
答案为:随便选的 - 钦定1种颜色不能选的 + 钦定2种颜色不能选的 - ... 。
爆搜每种颜色是否被钦定不能选,然后使用矩阵树定理求出当前条件下的生成树个数即可。
时间复杂度 $O(2^n·n^3)$ 。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 1000000007
typedef long long ll;
using namespace std;
int n , m[18] , vx[18][140] , vy[18][140] , v[18];
ll a[18][18] , ans;
inline ll pow(ll x , int y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
void dfs(int x , int flag)
{
if(x == n)
{
memset(a , 0 , sizeof(a));
int i , j , k;
ll now = 1 , t;
for(i = 1 ; i < n ; i ++ )
if(v[i])
for(j = 1 ; j <= m[i] ; j ++ )
a[vx[i][j]][vx[i][j]] ++ , a[vy[i][j]][vy[i][j]] ++ , a[vx[i][j]][vy[i][j]] -- , a[vy[i][j]][vx[i][j]] -- ;
for(i = 2 ; i <= n ; i ++ )
{
for(j = i ; j <= n ; j ++ )
if(a[j][i])
break;
if(j > n) break;
if(j != i)
{
flag = -flag;
for(k = i ; k <= n ; k ++ )
swap(a[i][k] , a[j][k]);
}
now = now * a[i][i] % mod , t = pow(a[i][i] , mod - 2);
for(j = i ; j <= n ; j ++ ) a[i][j] = a[i][j] * t % mod;
for(j = i + 1 ; j <= n ; j ++ )
for(t = a[j][i] , k = i ; k <= n ; k ++ )
a[j][k] = (a[j][k] - t * a[i][k] % mod + mod) % mod;
}
if(i > n) ans = (ans + flag * now + mod) % mod;
return;
}
v[x] = 1 , dfs(x + 1 , flag);
v[x] = 0 , dfs(x + 1 , -flag);
}
int main()
{
int i , j;
scanf("%d" , &n);
for(i = 1 ; i < n ; i ++ )
{
scanf("%d" , &m[i]);
for(j = 1 ; j <= m[i] ; j ++ )
scanf("%d%d" , &vx[i][j] , &vy[i][j]);
}
dfs(1 , 1);
printf("%lld\n" , ans);
return 0;
}
【bzoj4596】[Shoi2016]黑暗前的幻想乡 容斥原理+矩阵树定理的更多相关文章
- luoguP4336 [SHOI2016]黑暗前的幻想乡 容斥原理 + 矩阵树定理
自然地想到容斥原理 然后套个矩阵树就行了 求行列式的时候只有换行要改变符号啊QAQ 复杂度为\(O(2^n * n^3)\) #include <cstdio> #include < ...
- [luogu3244 SHOI2016] 黑暗前的幻想乡(容斥原理+矩阵树定理)
传送门 Description 给出 n 个点和 n−1 种颜色,每种颜色有若干条边.求这张图多少棵每种颜色的边都出现过的生成树,答案对 109+7 取模. Input 第一行包含一个正整数 N(N& ...
- 【BZOJ4596】黑暗前的幻想乡(矩阵树定理,容斥)
[BZOJ4596]黑暗前的幻想乡(矩阵树定理,容斥) 题面 BZOJ 有\(n\)个点,要求连出一棵生成树, 指定了一些边可以染成某种颜色,一共\(n-1\)种颜色, 求所有颜色都出现过的生成树方案 ...
- 【bzoj4596】[Shoi2016]黑暗前的幻想乡 (矩阵树定理+容斥)
Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类)博丽灵梦和八云紫等人整日高谈所有妖怪平等 ...
- bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 464 Solved: 264[Submit][Sta ...
- BZOJ4596: [Shoi2016]黑暗前的幻想乡
Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖 怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类) 博丽灵梦和八云紫等人整日高谈所有妖怪 ...
- 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理
[BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...
- bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)
bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
随机推荐
- JAVA框架 Spring AOP--切入点表达式和通知类型
一:AOP的相关术语: 1)Joinpoint(连接点):所谓的连接点是指那些可以被拦截点,在spring中这些点是指方法.因为在spring中支持方法类型的连接点. 2)Pointcut(切入点): ...
- HDU1875+Prim模板
https://cn.vjudge.net/problem/HDU-1875 相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府 ...
- C. Sad powers
You're given Q queries of the form (L, R). For each query you have to find the number of such x that ...
- jqgrid 使用自带的行编辑
上篇jqgrid 单击行启用行编辑,切换行保存原编辑行 本篇,说说使用jqgrid自带的行编辑 1)设置需要编辑的列 editable: true colModel: [ { label: '字段编 ...
- php操作url 函数等
pathinfo() - Returns information about a file path parse_str() - Parses the string into variables pa ...
- 第3章 如何用DAP仿真器下载程序
第3章 如何用DAP仿真器下载程序 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/f ...
- [HEOI2012]采花 BZOJ2743
分析: 听说主席树和莫队可以做,前者不想写,后者我不会... 我们考虑将询问离线,按照左端点排序,之后先处理好从1开始选的答案,之后枚举从1到n,之后依次删除nxt[i],添加nxt[nxt[i]], ...
- Scala--包和引入
一.包 同一个包可以定义在多个文件中,你也可以在同一个文件中定义多个包 文件名为:pack.scala package com{ package scala{ package test{ class ...
- js之浅拷贝与深拷贝
浅拷贝:只会复制对象的第一层数据 深拷贝:不仅仅会复制第一层的数据,如果里面还有对象,会继续进行复制,直到复制到全是基本数据类型为止 简单来说,浅拷贝是都指向同一块内存区块,而深拷贝则是另外开辟了一块 ...
- ECC检验与纠错
引入ECC ECC:Error Checking and Correction,是一种差错检测和修正的算法. NAND闪存在生产和使用中都会有坏块产生,BBM就是坏块的管理机制.而生产坏块已经无法避免 ...