import torch import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import time import sys sys.path.append("..") #导入d2lzh_pytorch import d2lzh_pytorch as d2l #导入所需要的包和模块 mnist_train =torchvision.datasets.F…
基准数据集 深度学习中经常会使用一些基准数据集进行一些测试.其中 MNIST, Cifar 10, cifar100, Fashion-MNIST 数据集常常被人们拿来当作练手的数据集.为了方便,诸如 Keras.MXNet.Tensorflow 都封装了自己的基础数据集,如 MNIST.cifar 等.如果我们要在不同平台使用这些数据集,还需要了解那些框架是如何组织这些数据集的,需要花费一些不必要的时间学习它们的 API.为此,我们为何不创建属于自己的数据集呢?下面我仅仅使用了 Numpy 来…
PyTorch 图像分类 如何定义神经网络,计算损失值和网络里权重的更新. 应该怎么处理数据? 通常来说,处理图像,文本,语音或者视频数据时,可以使用标准 python 包将数据加载成 numpy 数组格式,然后将这个数组转换成 torch.*Tensor 对于图像,可以用 Pillow,OpenCV 对于语音,可以用 scipy,librosa 对于文本,可以直接用 Python 或 Cython 基础数据加载模块,或者用 NLTK 和 SpaCy 特别是对于视觉,已经创建了一个叫做 totc…
今天通过论坛偶然知道,在mnist之后,还出现了一个旨在代替经典mnist数据集的Fashion MNIST,同mnist一样,它也是被用作深度学习程序的“hello world”,而且也是由70k张28*28的图片组成的,它们也被分为10类,有60k被用作训练,10k被用作测试.唯一的区别就是,fashion mnist的十种类别由手写数字换成了服装.这十种类别如下: 'T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat','Sandal',…
之前用过sklearn提供的划分数据集的函数,觉得超级方便.但是在使用TensorFlow和Pytorch的时候一直找不到类似的功能,之前搜索的关键字都是"pytorch split dataset"之类的,但是搜出来还是没有我想要的.结果今天见鬼了突然看见了这么一个函数torch.utils.data.Subset.我的天,为什么超级开心hhhh.终于不用每次都手动划分数据集了. torch.utils.data Pytorch提供的对数据集进行操作的函数详见:https://pyt…
Fashion MNIST https://www.kaggle.com/zalando-research/fashionmnist Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, asso…
mnist数据集是由深度学习大神 LeCun等人制作完成的数据集,mnist数据集也常认为是深度学习的“ Hello World!”. 官网:http://yann.lecun.com/exdb/mnist/ mnist数据集由6万张训练数据和1万张测试数据组成. ​ 官网提供下载,但由于是国外的服务器,下载速度很慢.这里提供百度网盘下载地址: 链接:https://pan.baidu.com/s/17KUWe8JdQBHsAg3B4m5SNg 提取码:wyxn…
为什么要定义Datasets: PyTorch提供了一个工具函数torch.utils.data.DataLoader.通过这个类,我们在准备mini-batch的时候可以多线程并行处理,这样可以加快准备数据的速度.Datasets就是构建这个类的实例的参数之一. 如何自定义Datasets 下面是一个自定义Datasets的框架: class CustomDataset(data.Dataset):#需要继承data.Dataset def __init__(self): # TODO # 1…
本文首发于个人博客https://kezunlin.me/post/bcdfb73c/,欢迎阅读最新内容! tensorrt fp32 fp16 tutorial with caffe pytorch minist model Series Part 1: install and configure tensorrt 4 on ubuntu 16.04 Part 2: tensorrt fp32 fp16 tutorial Part 3: tensorrt int8 tutorial Code…
前言 后面工作中有个较重要的 task 是将 YOLOV3 目标检测和 LanNet 车道线检测和到一个网络中训练,特别的是,这两部分数据来自于不同的数据源.这和我之前在 caffe 环境下训练检测整个车身的同时还要训练车头车尾类似,只不过环境变更到了 tensorflow,尴尬的是,这个月才真正接触 TF.因此,先拿 MNIST 和Fashion_MNIST 这两个数据集来练练手了. 数据预处理 MNIST 和 Fashion_MNIST 这两个数据集下载下来是压缩文件格式的,为了方便后面使用…
准备数据 准备 COCO128 数据集,其是 COCO train2017 前 128 个数据.按 YOLOv5 组织的目录: $ tree ~/datasets/coco128 -L 2 /home/john/datasets/coco128 ├── images │   └── train2017 │   ├── ... │   └── 000000000650.jpg ├── labels │   └── train2017 │   ├── ... │   └── 000000000650…
The Street View House Numbers (SVHN) Dataset SVHN is a real-world image dataset for developing machine learning and object recognition algorithms with minimal requirement on data preprocessing and formatting. It can be seen as similar in flavor to MN…
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'denny' __time__ = '2017-9-9 9:03' import torch import torchvision from torch.autograd import Variable import torch.utils.data.dataloader as Data train_data = torchvision.datasets.MNIST( './m…
本次使用的是2.0测试版,正式版估计会很快就上线了 tf2好像更新了蛮多东西 虽然教程不多 还是找了个试试 的确简单不少,但是还是比较喜欢现在这种写法 老样子先导入库 import tensorflow as tf import tensorflow_datasets as tfds import numpy as np import matplotlib.pyplot as plt import math import tqdm import tqdm.auto tqdm.tqdm = tqd…
softmax #!/usr/bin/env python # coding: utf-8 # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') import gluonbook as gb from mxnet import autograd,nd # In[2]: batch_size = 256 train_iter,test_iter = gb.load_data_fashion_mnist(batch_size) #…
主题列表:juejin, github, smartblue, cyanosis, channing-cyan, fancy, hydrogen, condensed-night-purple, greenwillow, v-green, vue-pro, healer-readable 贡献主题:https://github.com/xitu/juejin-markdown-themes theme: smartblue highlight: 在上一篇文章中已经讲解了Siamese Net的原…
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >的顺序. 二:使用caffe做图像分类识别训练测试mnist数据集 1.下载MNIST数据集,MNIST数据集包含四个文件信息,见表格: 文件 内容 train-images-idx3-ubyte.gz 训练集图片 - 55000 张 训练图…
最近在学习PyTorch,  但是对里面的数据类和数据加载类比较迷糊,可能是封装的太好大部分情况下是不需要有什么自己的操作的,不过偶然遇到一些自己导入的数据时就会遇到一些问题,因此自己对此做了一些小实验,小尝试. 下面给出一个常用的数据类使用方式: def data_tf(x): x = np.array(x, dtype='float32') / 255 # 将数据变到 0 ~ 1 之间 x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到 x = x.reshape((-1…
 学习工具最快的方法就是在使用的过程中学习,也就是在工作中(解决实际问题中)学习.文章结尾处附完整代码. 一.数据准备  在Pytorch中提供了MNIST的数据,因此我们只需要使用Pytorch提供的数据即可. from torchvision import datasets, transforms# batch_size 是指每次送入网络进行训练的数据量batch_size = 64# MNIST Dataset# MNIST数据集已经集成在pytorch datasets中,可以直接调用t…
一段时间没有更新博文,想着也该写两篇文章玩玩了.而从一个简单的例子作为开端是一个比较不错的选择.本文章会手把手地教读者构建一个简单的Mnist(Fashion-Mnist同理)的分类器,并且会使用相对完整的Pytorch训练框架,因此对于初学者来说应该会是一个方便入门且便于阅读的文章.本文的代码来源于我刚学Pytorch时的小项目,可能在形式上会有引用一些github上的小代码.同时文风可能会和我之前看的一些外国博客有点相近. 本文适用对象: 刚入门的Pytorch新手,想要用Pytorch来完…
Pytorch中数据集读取 在机器学习中,有很多形式的数据,我们就以最常用的几种来看: 在Pytorch中,他自带了很多数据集,比如MNIST.CIFAR10等,这些自带的数据集获得和读取十分简便: import torch import torch.nn as nn import torch.utils.data as Data import torchvision train_data = torchvision.datasets.MNIST( root='./mnist/', # 数据集存…
任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率.(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 pytorch:1.5.1 代码地址GitHub:https://github.com/xiaohuiduan/deeplearning-study/tree/main/手写数字识别 数据集介绍 MNIST数字数据集来自MNIST handwritten digit database, Yann LeC…
使用libsvm对MNIST数据集进行实验 在学SVM中的实验环节,老师介绍了libsvm的使用.当时看完之后感觉简单的说不出话来. 1. libsvm介绍 虽然原理要求很高的数学知识等,但是libsvm中,完全就是一个工具包,拿来就能用.当时问了好几遍老师,公司里做svm就是这么简单的?敲几个命令行就可以了...貌似是这样的.当然,在大数据化的背景下,还会有比如:并行SVM.多核函数SVM等情况的研究和应用. 实验环节老师给的数据很简单,也就1000个数据点,使用svm进行分类.没有太多好说的…
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231n.stanford.edu/syllabus.html Ubuntu安装caffe教程参考:http://caffe.berkeleyvision.org/install_apt.html 先讲解一下caffe设计的架构吧: 训练mnist数据集使用 build/tools/caffe 训练步骤:…
本次分类问题使用的数据集是MNIST,每个图像的大小为\(28*28\). 编写代码的步骤如下 载入数据集,分别为训练集和测试集 让数据集可以迭代 定义模型,定义损失函数,训练模型 代码 import torch import torch.nn as nn import torchvision.transforms as transforms import torchvision.datasets as dsets from torch.autograd import Variable '''下…
RNN介绍   在读本文之前,读者应该对全连接神经网络(Fully Connected Neural Network, FCNN)和卷积神经网络( Convolutional Neural Network, CNN)有一定的了解.对于FCNN和CNN来说,他们能解决很多实际问题,但是它们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的 .而在现实生活中,我们输入的向量往往存在着前后联系,即前一个输入和后一个输入是有关联的,比如文本,语音,视频等,因此,我们需要了解深度学习中…
该工作的主要目的是为了练习运用pycaffe来进行神经网络一站式训练,并从多个角度来分析对应的结果. 目标: python的运用训练 pycaffe的接口熟悉 卷积网络(CNN)和全连接网络(DNN)的效果差异性 学会从多个角度来分析分类结果 哪些图片被分类错误并进行可视化? 为什么被分错? 每一类是否同等机会被分错? 在迭代过程中,每一类的错误几率如何变化? 是否开始被正确识别后来又被错误识别了? 测试数据集:mnist 代码:https://github.com/TiBAiL/Pycaffe…
1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('./data/mnist', one_hot=True) MNIST数据集共有55000(mnist.train.num_examples)张用于训练的数据,对应的有55000个标签:共有10000(mnist.t…
原文:http://blog.csdn.net/arthur503/article/details/19974057 在学SVM中的实验环节,老师介绍了libsvm的使用.当时看完之后感觉简单的说不出话来. 1. libsvm介绍 虽然原理要求很高的数学知识等,但是libsvm中,完全就是一个工具包,拿来就能用.当时问了好几遍老师,公司里做svm就是这么简单的?敲几个命令行就可以了...貌似是这样的.当然,在大数据化的背景下,还会有比如:并行SVM.多核函数SVM等情况的研究和应用. 实验环节老…
原帖地址:https://www.jiqizhixin.com/articles/2018-04-03-5 K 近邻算法,简称 K-NN.在如今深度学习盛行的时代,这个经典的机器学习算法经常被轻视.本篇教程将带你使用 Scikit-Learn 构建 K 近邻算法,并应用于 MNIST 数据集.然后,作者将带你构建自己的 K-NN 算法,开发出比 Scikit-Learn K-NN 更准更快的算法. 1. K 近邻分类模型 K 近邻算法是一种容易实现的监督机器学习算法,并且其分类性能的鲁棒性还不错…