一个门外汉写的MXNET跑MNIST的例子,三层全连接层最后验证率是97%左右,毕竟是第一个例子,主要就是用来理解MXNet怎么使用. #导入需要的模块 import numpy as np #numpy只保存数值,用于数值运算,解决Python标准库中的list只能保存对象的指针的问题 import os #本例子中没有使用到 import gzip #使用zlib来压缩和解压缩数据文件,读写gzip文件 import struct #通过引入struct模块来处理图片中的二进制数据 impo…
import numpy as npimport gzip import struct import keras as ks import logging from keras.layers import Dense, Activation, Flatten, Convolution2D from keras.utils import np_utils def read_data(label_url,image_url): with gzip.open(label_url) as flbl: m…
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231n.stanford.edu/syllabus.html Ubuntu安装caffe教程参考:http://caffe.berkeleyvision.org/install_apt.html 先讲解一下caffe设计的架构吧: 训练mnist数据集使用 build/tools/caffe 训练步骤:…
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >的顺序. 二:使用caffe做图像分类识别训练测试mnist数据集 1.下载MNIST数据集,MNIST数据集包含四个文件信息,见表格: 文件 内容 train-images-idx3-ubyte.gz 训练集图片 - 55000 张 训练图…
使用自己准备的mnist数据集,将0-9的bmp图像分别放到0-9文件夹下,然后用mxnet训练. 1.制作rec数据集 (1).制作list…
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码就可以获取的到,非常方便.关于MNIST的基本信息可以参考我的上一篇随笔. mnist = input_data.read_data_sets('./data/mnist', one_hot=True) 2.模型基本结构 本次采用的训练模型为三层神经网络结构,输入层节点数与MNIST一行数据的长度一…
任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率.(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 pytorch:1.5.1 代码地址GitHub:https://github.com/xiaohuiduan/deeplearning-study/tree/main/手写数字识别 数据集介绍 MNIST数字数据集来自MNIST handwritten digit database, Yann LeC…
1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('./data/mnist', one_hot=True) MNIST数据集共有55000(mnist.train.num_examples)张用于训练的数据,对应的有55000个标签:共有10000(mnist.t…
# -*- coding = utf-8 -*- # @Time : 2021/3/16 # @Author : pistachio # @File : test1.py # @Software : PyCharm # 安装 TensorFlow import tensorflow as tf #载入并准备好 MNIST 数据集.将样本从整数转换为浮点数 mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) =…
mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存 import numpy as np import mxnet as mx import logging logging.getLogger().setLevel(logging.DEBUG) batch_size = 100 mnist = mx.test_utils.get_mnist() train_iter = mx.io.NDArrayIter(mnist['train_data'], mnist['trai…
from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载数据集 mnist = input_data.read_data_sets(r"C:/Users/HPBY/tem/data/",one_hot=True)#加载本地数据 以独热编码形式 import tensorflow as tf #设置超参 learning_rate = 0.01…
前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%.在换用多层神经网络后,正确率已有很大的提升.这次将采用卷积神经网络继续进行测试. 1.模型基本结构 如下图所示,本次采用的模型共有8层(包含dropout层).其中卷积层和池化层各有两层. 在整个模型中,输入层负责数据输入:卷积层负责提取图片的特征:池化层采用最大池化的方式,突出主要特征,并减少参数维度:全连接层再将个特征组合起来:dropout层可以减少每次训练的计算量,并可以一定程度上避免过…
首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元 代码如下 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data", one_hot=True) #每个批次的大小 batch_size = 100 #计算一共有多少个批次…
1.   caffe-master文件夹权限修改 下载的caffe源码编译的caffe-master文件夹貌似没有写入权限,输入以下命令修改: sudo chmod -R 777 ~/caffe-master/ 2.   下载mnist数据库 cd ~/caffe sduo ./data/mnist/get_mnist.sh caffe中的./data/mnist/get_mnist.sh 文件实现了下载mnist数据库的功能,文件的内容如下: 执行之后,在./data/mnist文件夹下生成4…
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data def add_layer(inputs,in_size,out_size,activation_function=None): W=tf.Variable(tf.random_normal([in_size,out_size])) b=tf.Variable(tf.zeros([1,out_s…
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练.而这篇文章是想自己完成LeNet网络来训练自己的数据集.LeNet主要用来进行手写字符的识别与分类,下面记录一下自己学习的过程. 我的学习步骤分为以下四步: 1,温习LeNet-5的网络层 2,使用LeNet-5训练MNIST数据集 3,使用LeNet-5训练TFRecord格式的MNIST数据集…
如果说"Hello Word!"是程序员的第一个程序,那么MNIST数据集,毫无疑问是机器学习者第一个训练的数据集,本文将使用Google公布的TensorFLow来学习训练MNIST数据集. 本文结构分为三个部分,一是如何使用TensorFLow来学习训练MNIST数据集,二是运行结果,三是问题小结. 一. TensorFLow来学习训练MNIST 在github上下载数据:https://github.com/tensorflow/tensorflow/tree/master/te…
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参数说明:x,y表示需要比较的两组数 3.tf.cast(y, 'float') # 将布尔类型转换为数字类型 参数说明:y表示输入的数据,‘float’表示转换的数据类型 4.tf.argmax(y, 1) # 返回每一行的最大值的索引 参数说明:y表示输入数据,1表示每一行的最大值的索引,0表示每…
1. MNIST数据集介绍 MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的: MNIST数据库有以下特性: 包含了60000个训练样本集和10000个测试样本集: 分4部分,分别是一个训练图片集,一个训练标签集,一个测试图片集,一个测试标签集,每个标签的值是0~9之间的数字: 原始图像归一化大小为28*28,以二进制形式保存 2.  Windows+caffe框架下MNIST数据集caffemodel分类模型训练及测试 1. 下载mnist数…
简单的训练MNIST数据集 (0-9的数字图片) 详细地址(包括下载地址):http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import input_data # 需要下载数据集(包括了input_data)# 加载数据集 mnist = input_data.read_data_sets(…
caffe在windows上的配置和编译能够參考例如以下的博客: http://blog.csdn.net/joshua_1988/article/details/45036993 http://blog.csdn.net/joshua_1988/article/details/45048871 http://blog.csdn.net/dongb5lz/article/details/45171187 http://m.blog.csdn.net/blog/thesby/43535619 依照…
一.二分类训练MNIST数据集练习 %matplotlib inlineimport matplotlibimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets import fetch_mldata mnist = fetch_mldata("MNIST original", data_home='MNIST_data/')X = mnist['data']y = mnist['target']di…
本文是在windows10上安装了CPU版本的Mindspore,并在mindspore的master分支基础上使用LeNet网络训练MNIST数据集,实践已训练成功,此文为记录过程中的出现问题: (据说此时mindspore的r0.7版本上是直接执行成功的) Windows10 Miniconda 4.8.3 Python 3.7.7 MindSpore master mindspore的gitee地址 [1]首先使用conda activate mindspore 进入mindspore虚拟…
反正基本上是给自己看的,直接贴写过注释后的代码,可能有的地方理解不对,你多担待,看到了也提出来(基本上对未来的自己说的),三层跑到了97%,毕竟是第一个例子,主要就是用来理解MXNet怎么使用. #导入需要的模块 import numpy as np #numpy只保存数值,用于数值运算,解决Python标准库中的list只能保存对象的指针的问题 import os #本例子中没有使用到 import gzip #使用zlib来压缩和解压缩数据文件,读写gzip文件 import struct…
tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: 文件列表:四个文件,分别为训练和测试集数据 Four files are available on 官网  http://yann.lecun.com/exdb/mnist/ : train-images-idx3-ubyte.gz:  training set images (9912422 by…
一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数据集进行训练和利用caffe来实现别人论文中的模型(目前在尝试的是轻量级的SqueezeNet)三步走.不求深度,但求详细.因为说实话caffe-windows的配置当初花了挺多时间的,目前貌似还真没有从头开始一步步讲起的教程,所以博主就争取试着每一步都讲清楚吧. 这里说些题外话:之所以选择Sque…
基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html  摘要 在前面的博文中,我详细介绍了Caffe的网络结构和求解文件,还介绍了如何制作LMDB和Hdf5数据源文件.但是我们还没有完整的介绍过如何在Caffe框架下去训练一个神经网络模型,在本篇博文中我将从最经典.简单的卷积神经网络Lenet(CNN的开端)和最简单的数据集MNIST(手写数字)出发,详细介绍整个网络的训练与测试过程. 1. …
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集.mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist/ .可直接下载四个解压文件,分别对应:训练集样本.训练集标签.测试集样本和测试集标签.解压缩之后发现,其是在一个文件中包含了所有图像. 二.caffe支持的数据格式:Lmdb和Leveldb 它们都…
code { margin: 0; padding: 0; white-space: pre; border: none; background: transparent; } code, pre tt { background-color: transparent; border: none; } --> emberjs学习一(环境和第一个例子) 博客:http://www.cnblogs.com/xiangbing/p/emberjs-test.html 案例:http://www.love…
想要知道ElasticSearch是如何使用的,最快的方式就是通过一个简单的例子,第一个例子将会包括基本概念如索引.搜索.和聚合等,需求是关于公司管理员工的一些业务. 员工文档索引 业务首先需要存储员工数据.这将采取一个员工文档的形式:单个文档表示单个员工.在Elasticsearch中存储数据的行为称为索引,但是在索引文档之前,我们需要决定在哪里存储它. 在Elasticsearch中,文档属于某个类型,这些类型位于索引中.可以绘制一些(粗略)与传统关系数据库的对比: Relational D…