首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
TensorFlow实现超参数调整
】的更多相关文章
TensorFlow实现超参数调整
TensorFlow实现超参数调整 正如你目前所看到的,神经网络的性能非常依赖超参数.因此,了解这些参数如何影响网络变得至关重要. 常见的超参数是学习率.正则化器.正则化系数.隐藏层的维数.初始权重值,甚至选择什么样的优化器优化权重和偏置. 超参数调整过程 调整超参数的第一步是构建模型.与之前一样,在 TensorFlow 中构建模型. 添加一种方法将模型保存在 model_file 中.在 TensorFlow 中,可以使用 Saver 对象来完成.然后保存在会话中: 确定要调整的超参数,并为…
TensorFlow从0到1之TensorFlow超参数及其调整(24)
正如你目前所看到的,神经网络的性能非常依赖超参数.因此,了解这些参数如何影响网络变得至关重要. 常见的超参数是学习率.正则化器.正则化系数.隐藏层的维数.初始权重值,甚至选择什么样的优化器优化权重和偏置. 超参数调整过程 调整超参数的第一步是构建模型.与之前一样,在 TensorFlow 中构建模型. 添加一种方法将模型保存在 model_file 中.在 TensorFlow 中,可以使用 Saver 对象来完成.然后保存在会话中: 确定要调整的超参数,并为超参数选择可能的值.在这里,你可…
吴恩达《深度学习》第二门课(3)超参数调试、Batch正则化和程序框架
3.1调试处理 (1)不同超参数调试的优先级是不一样的,如下图中的一些超参数,首先最重要的应该是学习率α(红色圈出),然后是Momentum算法的β.隐藏层单元数.mini-batch size(黄色圈出).再之后是Layer.learning rate decay(紫色圈出).最后是Adam算法中的β1.β2.ε. (2)用随机取值代替网格点取值.下图左边是网格点取值,如果二维参数中,一个参数调试的影响特别小,那么虽然取了25个点,其实只相当于取了5个不同的点:而右图中随机取值取了多少个点就代…
论文学习-系统评估卷积神经网络各项超参数设计的影响-Systematic evaluation of CNN advances on the ImageNet
博客:blog.shinelee.me | 博客园 | CSDN 写在前面 论文状态:Published in CVIU Volume 161 Issue C, August 2017 论文地址:https://arxiv.org/abs/1606.02228 github地址:https://github.com/ducha-aiki/caffenet-benchmark 在这篇文章中,作者在ImageNet上做了大量实验,对比卷积神经网络架构中各项超参数选择的影响,对如何优化网络性能很有启发…
CNN超参数优化和可视化技巧详解
https://zhuanlan.zhihu.com/p/27905191 在深度学习中,有许多不同的深度网络结构,包括卷积神经网络(CNN或convnet).长短期记忆网络(LSTM)和生成对抗网络(GAN)等. 在计算机视觉领域,对卷积神经网络(简称为CNN)的研究和应用都取得了显著的成果.CNN网络最初的诞生收到了动物视觉神经机制的启发,目前已成功用于机器视觉等领域中. 技术博客Towards Data Science最近发布了一篇文章,作者Suki Lau.文章讨论了在卷积神经网络中,该…
跟我学算法-吴恩达老师(超参数调试, batch归一化, softmax使用,tensorflow框架举例)
1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_rate_dacay 学习率衰减, mini-batch size 每次迭代的样本数目 当需要调节的参数的数目较多时,我们通常使用随机参数选择进行参数调节. 比如学习率的范围为0.0001 - 1 , 在0.0001-0.001之间,样本随学习率的变化较大,因此有必要增加这部分的权重,我们使用log…
tensorflow 之tensorboard 对比不同超参数训练结果
我们通常使用tensorboard 统计我们的accurate ,loss等,并绘制曲线,通常是使用一次训练中的, 但是,机器学习中通常要对比不同的 ‘超参数’给模型训练和预测能力的不同这时候如何整合多个训练模型的训练 等情况呢? 其实我们可以讲不同训练结果放在一个大文件夹中,比如训练不同learning_rate=0.1 ,0.2,0.3 我们通常是: tensorborad logdir=/.../miniset/learnrate=0.1/ tensorborad logdir=/.../…
机器学习:调整kNN的超参数
一.评测标准 模型的测评标准:分类的准确度(accuracy): 预测准确度 = 预测成功的样本个数/预测数据集样本总数: 二.超参数 超参数:运行机器学习算法前需要指定的参数: kNN算法中的超参数:k.weights.P: 一般超参数之间也相互影响: 调参,就是调超参数: 1)问题 # 以kNN算法为例 平票:如果k个点中,不同类型的样本数相等,怎么选取? 如果选取的k个点中,数量多的一类样本点距离测试样本较远,数量少的一类样本点距离测试样本较近,此时选取数量较多的类型作为输出结果,不具说服…
【深度学习篇】--神经网络中的调优一,超参数调优和Early_Stopping
一.前述 调优对于模型训练速度,准确率方面至关重要,所以本文对神经网络中的调优做一个总结. 二.神经网络超参数调优 1.适当调整隐藏层数对于许多问题,你可以开始只用一个隐藏层,就可以获得不错的结果,比如对于复杂的问题我们可以在隐藏层上使用足够多的神经元就行了, 很长一段时间人们满足了就没有去探索深度神经网络, 但是深度神经网络有更高的参数效率,神经元个数可以指数倍减少,并且训练起来也更快!(因为每个隐藏层上面神经元个数减少了可以完成相同的功能,则连接的参数就少了) 就好像直接画一个森林会很慢,但…
Deep Learning.ai学习笔记_第二门课_改善深层神经网络:超参数调试、正则化以及优化
目录 第一周(深度学习的实践层面) 第二周(优化算法) 第三周(超参数调试.Batch正则化和程序框架) 目标: 如何有效运作神经网络,内容涉及超参数调优,如何构建数据,以及如何确保优化算法快速运行,从而使学习算法在合理时间内完成自我学习. 第一周(深度学习的实践层面) 如何选取一个神经网络的训练集.验证集和测试集呢? 如果数据量比较少,例如只有100条,1000条或者1万条数据,按照60%.20%.20%划分是比较合理的,但是在目前大部分数据都是远远大于这个数理级,也可以说是大数据规模的级别.…
超参数调试、Batch正则化和编程框架
1.调试处理 2.为超参数选择合适的范围 3.超参数在实践中调整:熊猫与鱼子酱 4.正则化网络的激活函数 5.将batch norm拟合进神经网络 6. 为什么Batch Norm会起作用? 7.测试集怎么用Batch Norm? 也就是说在测试集中,gamma和beta值都是训练集训练得到的值,而样本均值和方差是测试集本身计算出来的,公式如下: 8. softmax回归 9. 训练一个softmax分类器 参考文献: [1]为什么batch normalization在训练和测试时使用的均值和…
ng-深度学习-课程笔记-8: 超参数调试,Batch正则(Week3)
1 调试处理( tuning process ) 如下图所示,ng认为学习速率α是需要调试的最重要的超参数. 其次重要的是momentum算法的β参数(一般设为0.9),隐藏单元数和mini-batch的大小. 第三重要的是神经网络的层数和学习率衰减 adam算法的三个参数一般不调整,设定为0.9, 0.999, 10^-8. 注意这些直觉是ng的经验,ng自己说了,可能其它的深度学习研究者是不这么认为的. 那么如何选择参数呢?下面介绍两个策略,随机搜索和精细搜索. 早一代的机器学习算法中,如下…
lecture16-联合模型、分层坐标系、超参数优化及本课未来的探讨
这是HInton的第16课,也是最后一课. 一.学习一个图像和标题的联合模型 在这部分,会介绍一些最近的在学习标题和描述图片的特征向量的联合模型上面的工作.在之前的lecture中,介绍了如何从图像中提取语义有意义的特征.不过那是在没有从标题中得到帮助的情况下做的.显然在标题中的单词应该有助于从图片中提取合适的语义类型.类似的,图片也应该有助于在区分标题中的单词的意思是什么.所以idea就是我们要在一个很大的网络上,给他输入然后计算图像上提取的视觉特征向量,然后学习标题的单词表征,然后学着将这两…
deeplearning.ai 改善深层神经网络 week3 超参数调试、Batch正则化和程序框架 听课笔记
这一周的主体是调参. 1. 超参数:No. 1最重要,No. 2其次,No. 3其次次. No. 1学习率α:最重要的参数.在log取值空间随机采样.例如取值范围是[0.001, 1],r = -4*np.random.rand(), α = 10r. No. 2 Momentum β:0.9是个不错的选择.在1-β的log取值空间随机采样.例如取值范围[0.9, 0.999],则1-β的取值空间[0.001, 0.1]. No. 2 各个隐含层的神经元数量:可以在线性取值空间随机采样. No.…
[DeeplearningAI笔记]02_3.1-3.2超参数搜索技巧与对数标尺
Hyperparameter search 超参数搜索 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1 调试处理 需要调节的参数 级别一:\(\alpha\)学习率是最重要的需要调节的参数 级别二: Momentum参数 \(\beta\) 0.9是个很好的默认值 mini-batch size,以确保最优算法运行有效 隐藏单元数量 级别三: 层数 , 层数有时会产生很大的影响. learning rate decay 学习率衰减 级别四: NG在使用Adam算法时几乎不会调整\…
如何选取一个神经网络中的超参数hyper-parameters
1.什么是超参数 所谓超参数,就是机器学习模型里面的框架参数.比如聚类方法里面类的个数,或者话题模型里面话题的个数等等,都称为超参数.它们跟训练过程中学习的参数(权重)是不一样的,通常是手工设定的,经过不断试错来调整,或者对一系列穷举出来的参数组合一通枚举(叫做网格搜索).深度学习和神经网络模型,有很多这样的参数需要学习. 2.一些启发式规则 在实际应用中,当你使用神经网络去解决问题时,很难找到好的超参数.假设我们现在正在处理MINIST数据库的问题,并且对超参数是如何使用的一无所知.假设我们大…
评价指标的局限性、ROC曲线、余弦距离、A/B测试、模型评估的方法、超参数调优、过拟合与欠拟合
1.评价指标的局限性 问题1 准确性的局限性 准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷.比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率.所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素. 例子:Hulu的奢侈品广告主希望把广告定向投放给奢侈品用户.Hulu通过第三方的数据管理平台拿到了一部分奢侈品用户的数据,并以此为训练集和测试集,训练和测试奢侈品用户的分类模型,该模型的分类准确率超过了95%,但在实际广告…
训练超参数, 出现 Cannot use GPU in CPU-only Caffe 错误?
当我们用MNIST手写体数字数据库和LeNet CNN 模型训练超参数,运行 examples/mnist/train_lenet.sh是出现Cannot use GPU in CPU-only Caffe: check mode. 这时候需要调整两个配置文件:1.安装文件根目录的Makefile.config 里的 这一项去掉#2. examples/mnist/lenet_solver.prototxt 中 将这一项de的GPU改为CPU 后再运行 examples/mnist/train_…
机器学习-kNN-寻找最好的超参数
一 .超参数和模型参数 超参数:在算法运行前需要决定的参数 模型参数:算法运行过程中学习的参数 - kNN算法没有模型参数- kNN算法中的k是典型的超参数 寻找好的超参数 领域知识 经验数值 实验搜索 二.通过sklearn中的数据集进行测试 import numpy as np from sklearn import datasets # 装载sklearn中的手写数字数据集 digits = datasets.load_digits() x = digits.data y = digits…
机器学习:SVM(scikit-learn 中的 RBF、RBF 中的超参数 γ)
一.高斯核函数.高斯函数 μ:期望值,均值,样本平均数:(决定告诉函数中心轴的位置:x = μ) σ2:方差:(度量随机样本和平均值之间的偏离程度:, 为总体方差, 为变量, 为总体均值, 为总体例数) 实际工作中,总体均数难以得到时,应用样本统计量代替总体参数,经校正后,样本方差计算公式:S^2= ∑(X- ) ^2 / (n-1),S^2为样本方差,X为变量, 为样本均值,n为样本例数. σ:标准差:(反应样本数据分布的情况:σ 越小高斯分布越窄,样本分布越集中:σ 越大高斯分布越…
网格搜索与K近邻中更多的超参数
目录 网格搜索与K近邻中更多的超参数 一.knn网格搜索超参寻优 二.更多距离的定义 1.向量空间余弦相似度 2.调整余弦相似度 3.皮尔森相关系数 4.杰卡德相似系数 网格搜索与K近邻中更多的超参数 网格搜索,Grid Search:一种超参寻优手段:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果.(为什么叫网格搜索?以有两个参数的模型为例,参数a有3种可能,参数b有4种可能,把所有可能性列出来,可以表示成一个3*4的表格,循环过程就像是在每个网格里遍历.…
DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化
DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化 2017年11月29日 06:40:37 机器之心V 阅读数 2183 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/Uwr44UOuQcNsUQb60zk2/article/details/78661015 近日,DeepMind 发表论文提出一种新型的超参数调优方法,该方法从遗传算法获得启发大大提升了最优超参…
改善深层神经网络(三)超参数调试、Batch正则化和程序框架
1.超参数调试: (1)超参数寻找策略: 对于所有超参数遍历求最优参数不可取,因为超参数的个数可能很多,可选的数据过于庞大. 由于最优参数周围的参数也可能比较好,所以可取的方法是:在一定的尺度范围内随机取值,先寻找一个较好的参数,再在该参数所在的区域更精细的寻找最优参数. (2)选择合适的超参数范围: 假设 n[l] 可选取值 50~100:在整个范围内随机均匀取值 选取神经网络层数 #layers,L的可选取值为 2~4:在整个范围内随机均匀取值 学习速率 α 的可选取值 0.0001~1:在…
超参数 hyperparameters
转载:https://www.cnblogs.com/qamra/p/8721561.html 超参数的定义:在机器学习的上下文中,超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据.通常情况下,需要对超参数进行优化,给学习机选择一组最优超参数,以提高学习的性能和效果. 理解:超参数也是一个参数,是一个未知变量,但是它不同于在训练过程中的参数,它是可以对训练得到的参数有影响的参数,需要训练者人工输入,并作出调整,以便优化训练模型的效果. 超参数: 1. 定义关于模型的更高层…
deeplearning.ai 改善深层神经网络 week3 超参数调试、Batch Normalization和程序框架
这一周的主体是调参. 1. 超参数:No. 1最重要,No. 2其次,No. 3其次次. No. 1学习率α:最重要的参数.在log取值空间随机采样.例如取值范围是[0.001, 1],r = -4*np.random.rand(), α = 10r. No. 2 Momentum β:0.9是个不错的选择.在1-β的log取值空间随机采样.例如取值范围[0.9, 0.999],则1-β的取值空间[0.001, 0.1]. No. 2 各个隐含层的神经元数量:可以在线性取值空间随机采样. No.…
超参数、验证集和K-折交叉验证
本文首发自公众号:RAIS 前言 本系列文章为 <Deep Learning> 读书笔记,可以参看原书一起阅读,效果更佳. 超参数 参数:网络模型在训练过程中不断学习自动调节的变量,比如网络的权重和偏差: 超参数:控制模型.算法的参数,是架构层面的参数,一般不是通过算法学习出来的,比如学习率.迭代次数.激活函数和层数等. 与超参数对比的概念是参数,我们平时训练网络所说的调参,指的是调节 超参数.超参数的确定方法一般是凭借经验,或者类似问题的参数迁移. 问题来了,为啥超参数不通过学习确定?这是…
GridSearchCV网格搜索得到最佳超参数, 在K近邻算法中的应用
最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到GridSearchCV 网格搜索模型. 在没有学习到GridSearchCV 网格搜索模型之前, 寻找最优参数配置是通过人为改变参数, 来观察预测结果准确率的. 具体步骤如下: 修改参数配置 fit 训练集 预测测试集 预测结果与真实结果对比 重复上述步骤 GridSearchCV 网格搜索模型寻…
【笔记】KNN之网格搜索与k近邻算法中更多超参数
网格搜索与k近邻算法中更多超参数 网格搜索与k近邻算法中更多超参数 网络搜索 前笔记中使用的for循环进行的网格搜索的方式,我们可以发现不同的超参数之间是存在一种依赖关系的,像是p这个超参数,只有在 weights="uniform"才有意义 在sklearn中有一种封装好的网格搜索,grid search 我们首先设置一个数组,其内容可以当成字典来看待 对于第一组参数而言 'weights':["uniform"], 'n_nrightbors':[i for i…
Coursera Deep Learning笔记 改善深层神经网络:超参数调试 正则化以及梯度相关
笔记:Andrew Ng's Deeping Learning视频 参考:https://xienaoban.github.io/posts/41302.html 参考:https://blog.csdn.net/u012328159/article/details/80210363 1. 训练集.验证集.测试集(Train, Dev, Test Sets) 当数据量小的时候, 70% 训练, 30% 测试:或 60% 训练.20% 验证.20%测试. 训练集( training set):用来…
Galera集群server.cnf参数调整--Innodb存储引擎内存相关参数(一)
在innodb引擎中,内存的组成主要有三部分:缓冲池(buffer pool),重做日志缓存(redo log buffer),额外的内存池(additional memory pool).…