补一篇以前的扩展欧几里得的题,发现以前写错了竟然也过了,可能数据水??? 这个题还是很有意思的,和队友吵了两天,一边吵一边发现问题??? L. Knights without Fear and Reproach http://codeforces.com/gym/100812/problem/L time limit per test 2.0 s memory limit per test 256 MB input standard input output standard output Th…
L. Knights without Fear and Reproach time limit per test 2.0 s memory limit per test 256 MB input standard input output standard output They were all dead. The final lunge was an exclamation mark to everything that had led to this point. I wiped my s…
题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < a1, a2 ≤ 2·109,  - 2·109 ≤ b1, b2, L, R ≤ 2·109, L ≤ R). 题目思路: [数论][扩展欧几里得] 据题意可得同余方程组 x=b1(mod a1) 即 x=k1*a1+b1 x=b2(mod a2) x=k2*a2+b2 化简,k1*a1=k2*a2…
题目出自 Codeforces Round #126 (Div. 2) 的E. 题意大致如下:给定a,b,c,s,求三个非负整数x,y,z,满足0<=x<=y<=z,ax+by+cz=s,使得f(x,y,z)=|ax-by|+|by-cz|最小 思路:枚举z,得到一个方程ax+by=s-cz,用扩展欧几里得求出这个方程的一个解,然后三分通解的整系数,求出最小f值.至于为什么可以三分画画图就清楚了,两个绝对值函数叠加在一起最多只有三种状态(第一维表示临界点较小的那个绝对值函数):(降,降)…
题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11672&courseid=0 题目大意: 给定任意一个N,(N<=109)求斐波那契—卢卡斯数列的前两项A和B.(先满足B最小再满足A最小,A<=B) 斐波那契—卢卡斯数列是斐波那契数列的推广,斐波那契数列f[0]=0,f[1]=1,斐波那契—卢卡斯数列f[0]=A,f[…
/** 题目:青蛙的约会 链接:https://vjudge.net/contest/154246#problem/R 题意:一个跑道长为周长为L米,两只青蛙初始位置为x,y:(x!=y,同时逆时针运动,每一次运动分别为m,n米:问第几次运动后相遇,即在同一位置. 如果永远无法相遇输出Impossible. 思路: 设:次数为t: 圈总长为: L A位置:(x+m*t)%L; B位置: (y+n*t)%L; 如果: (x+m*t)%L = (y+n*t)%L 存在碰面: 暴力枚举t.太大了: 保…
题意:给你一个台球桌面,一个台球的初始位置和初始速度方向(只可能平行坐标轴或者与坐标轴成45度角),问你能否滚进桌子四个角落的洞里,如果能,滚进的是哪个洞. 如果速度方向平行坐标轴,只需分类讨论,看它是否在台球桌的边沿即可. 如果速度方向和坐标轴成45度,如下图 将整个过程展开, 设出射方向与当前所在桌面的两个边沿的距离分别为X,Y,则有方程X+pn=Y+qm,扩欧可求得解.然后再根据p.q的奇偶性即可确定滚进的是哪个洞(根据图中洞编号的翻折关系).…
扩欧,a+bx=c+dx,输出x>=0且y>=0,且a+bx最小的解. 要注意不能只保证x非负,还得看看能否保证y也非负. #include<cstdio> #include<iostream> using namespace std; typedef long long ll; ll a,b,c,d; void exgcd(ll a,ll b,ll &d,ll &x,ll &y) { if(!b) { d=a; x=1; y=0; } else…
扩展欧几里得是计算 ax + by = gcd(a,b) 的 x,y的整数解. 现在是ax + by + c = 0; 只要 -c 是 gcd(a,b) 的整数倍时有整数解,整数解是 x = x*(-c)/gcd(a,b) ; y = y*(-c)/gcd(a,b); #include <bits/stdc++.h> using namespace std; typedef long long ll; void gcd(ll a,ll b,ll& d,ll& x,ll&…
B. Proper Nutrition time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Vasya has n burles. One bottle of Ber-Cola costs a burles and one Bars bar costs b burles. He can buy any non-negative in…
吐槽:在比赛的时候,压根就没想到这题还可以对称: 题解:http://blog.csdn.net/danliwoo/article/details/52761839 比较详细: #include<iostream> #include<cstring> #include<cstdio> #include<cstdlib> #include<algorithm> #include<iomanip> #include<map>…
没想出来QAQ....QAQ....QAQ.... 对于一般情况,我们知道 ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b) 时方程是一定有解的. 如果改成 ax+by=cax+by=cax+by=c 的话该方程有解当且仅当 ccc % gcd(a,b)==0gcd(a,b)==0gcd(a,b)==0 . 这个结论在大于2个个未知数的时候也是成立的,即对于: a1x1+a2x2+a3x3+......anxn=gcd(a1,a2,a3,...an)a_{1}…
(点击此处查看原题) 题意分析 已知 n , p , w, d ,求x , y, z的值 ,他们的关系为: x + y + z = n x * w + y * d = p 思维法 当 y < w 的时候,我们最多通过1e5次枚举确定答案 而当 y >= w 的时候,平局所得分为:y * d = (y-w)*d + w*d ,可以看作平局的局数为 y - w ,多出的w*d贡献给 (w*d)/w = d 局胜局,所以胜局为 x + d ,说明此时用x+y局胜局和平局得到的分数可以由 x + d…
A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_back using namespace std; typedef long long ll; typedef unsigned long long ull; const ll LLmaxn = 2e18; ; inline int readint() { char c = getchar(); ; ') { c…
传送:http://codeforces.com/gym/101612 题意:给定一个数n(<=1e18),将n分解为若干个数的成绩.要求这些数两两之间的差值不能大于1. 分析: 若n==2^k,则答案一定是-1. 然后,考虑若n==a^k,枚举k,二分求a.若n==a^x*(a+1)^y,枚举x,y,二分求解a. 注意:两数相乘可能>1e18,特判. #include<bits/stdc++.h> using namespace std; typedef long long ll…
主题链接:点击打开链接 为了让球队后,删除是合法的.也就是说,对于每一个车辆, l+r+c 一样,按l+r+c分类. 然后dp一下. #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <math.h> #include <set> #include <vector> #include <map&…
这个题就是两个队,看最多能赢的个数,然后比较一下,看两个队是都能赢彼此,还是只有一个队赢的可能性最大.表达能力不好,意思差不多... 和田忌赛马有点像,emnnn,嗯. 代码: 1 #include<cstring> 2 #include<cstdio> 3 #include<cstdlib> 4 #include<cmath> 5 #include<iostream> 6 #include<algorithm> 7 using na…
D. Tanya and Password Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/508/problem/D Description While dad was at work, a little girl Tanya decided to play with dad's password to his secret database. Dad's password is a stri…
A /* Huyyt */ #include <bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define mkp(a,b) make_pair(a,b) #define pb push_back using namespace std; typedef long long ll; ; ; ]; int main() { int n; cin >> n; ;i<=n;i++) { cin >> num…
Proper Nutrition 题意:有n元钱,有2种单价不同的商品,是否存在一种购买方式使得钱恰好花光,如果有输入任意一种方式,如果没有输出“NO” 题解:可以使用拓展欧几里得快速求解. #include<iostream> using namespace std; #define ll long long ll gcd(ll a, ll b) { return b? gcd(b, a%b) : a; } void ex_gcd(ll a, ll b, ll &x, ll &…
传送门 题目 \[ \begin{aligned} &f_n=c^{2*n-6}f_{n-1}f_{n-2}f_{n-3}&\\ \end{aligned} \] 思路 我们通过迭代发现\(f_n\)其实就是由\(c^{t_1},f_1^{t_2},f_2^{t_3},f_3^{t_4}\)相乘得到,因此我们可以分别用矩阵快速幂求出\(t_1,t_2,t_3,t_4\),最后用快速幂求得答案. 对于\(n<=3\)的我们直接输出即可,\(n>3\)的我们先将\(n\)减去\(3…
Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的k. 首先让b>a,由lcm(a,b)=a*b/gcd(a,b),可以得出如果b%a==0,那么它们的最小公倍数就是b,此时的k就等于0.但如果b%a!=0的话,我们设g=gcd(a+k,b+k),那么就是有a+k=q1*g,b+k=q2*g,两者做差,那么b-a=(q2-q1)*g,由此我们可以知…
又一次遇到了碰撞类的题目,还是扩展gcd和同余模方程.上次博客的链接在这:http://www.cnblogs.com/zzyDS/p/5874440.html. 现在干脆解同余模直接按照套路来吧,如果有解,那么x先乘以(c/g),然后mod数是(b/g),就按照这个套路来好了- -. 这题的思路大概是这样的,首先碰到墙壁的角肯定会在lcm(n,m)时刻发生,这之后是原路返回的,也就是说如果在这个时间之前都没有碰到的点一定是永远碰不到的. 对每一个点(x0,y0)来说,解 2nx+(-)x0 =…
根据拓展欧几里得对于同余方程 $ax+by=c$ ,有解的条件是 $(a,b)|c$. 那么对于构造的序列的数,前一个数 $a$  和后一个数 $b$ ,应该满足 $a*x=b(mod m)$ 即 $ax+my=b$; 建图时,遍历 $0 \to m-1$,对于没有标记的数 $i$ ,在 $gcd(i,m)$ 和 $i$ 之间连边. 但是,仅仅如此只是把每个数和其与m的最大公因数相连,还有些情况没有考虑.只要满足 $(a,m)|b$,那么 $a,b$就可以连边. 对于一个点,如果他指向的点也是一…
D. Recover it! Authors guessed an array aa consisting of nn integers; each integer is not less than 22 and not greater than 2⋅1052⋅105. You don't know the array aa, but you know the array bb which is formed from it with the following sequence of oper…
一直在WA,后来我发现我把东西看反了…… [题目大意] 给出一个长度为L的环状坐标轴,两个点开始时位于(X,0).(Y,0).每次两点分别往右边移动m和n,问能否相遇? [思路] 由题意,可得: X+mt=Y+nt(mod L) (X+mt)-(Y+nt)=L*k (n-m)t+L*k=X-Y. 可以用扩展欧几里得来做.具体来说,显然要满足n-m和L的最大公约数(记为d)要整除X-Y,否则无解.这个可以在扩展欧几里得中求出. 式子可以化简为:[(n-m)/d]*t+(L/d)*k=(X-Y)/d…
[题意]数列满足an=an-1+an-2,n>=3.现在a1=i,a2=[l,r],要求满足ak%p=m的整数a2有多少个.10^18. [算法]数论(扩欧)+矩阵快速幂 [题解]定义fib(i)表示第 i 个斐波那契数,将数列an列项观察容易发现ak=a1*fib(k-2)+a2*fib(k-1).fib(i)可以用矩阵快速幂迅速得解. 现在实际已知ak%p,a1,fib(k-2),fib(k-1),令a=fib(k-1),b=m-i*fib(k-2),x=a2,则方程转化为:ax≡b(%p)…
qbxt Day3 on 2019-8-18 一.基础数论 1.进制转换 进制转换是一个非常简单且基础的问题. 也许我们只需要...Emmm... 列个式子就好了鸭 设\(k\)进制数每一位上是\(a_i\),那么\((x)_k=\sum\limits_{i=1}^{\texttt{位数}}a_i*k^{i-1}\) 这是任意进制下数字的转换 和进制的转换有关的题目大多数围绕这个式子有关. (NOIp普及组那个可以直接表示一位就够了) 2.辗转相除法(欧几里得算法) 辗转相除法应该是最简单的数论…
Description \(x=a_1k+b_1=a_2l+b_2,L\leqslant x \leqslant R\) 求满足这样条件的 \(x\) 的个数. Sol 扩展欧几里得+中国剩余定理. 发现这个相当于一个线性方程组. \(x \equiv b_1(mod a_1)\) \(x \equiv b_2(mod a_2)\) 将原来两式相减得到 \(a_1k-a_2l=b_2-b_1\) 这个用扩展欧几里得求一下,如果 \((a_1,a_2)\nmid  (b_2-b_1)\) 显然无解…
黑白图像直方图 发布时间: 2017年7月9日 18:30   最后更新: 2017年7月10日 21:08   时间限制: 1000ms   内存限制: 128M 描述 在一个矩形的灰度图像上,每个像素点或者是黑色的或者是白色的.黑色像素点用1表示,白色像素点用0表示.现在要求你编写一个程序,计算每列上黑色像素点的个数并输出.如下图所示是一个6∗8的黑板图像. 1 1 0 0 1 1 1 1  0 1 1 0 1 0 1 0  1 1 1 1 0 1 1 0  0 1 1 0 0 1 0 0 …