Havel-Hakimi定理 POJ1659】的更多相关文章

题意 题目链接 \(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图 Sol Havel–Hakimi定理: 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这个序列. 令\(S=(d_1,d_2,\dots,d_n)\)为有限多个非负整数组成的非递增序列. S可简单图化当且仅当有穷序列\(S'=(d_2-1,d_3-1,...,d(d_1+1)-1,d(d_1+2),...,d_n)\)只含有非负整数且是可简单图化的. 最后判断一下是否都是零就好了 感觉…
http://blog.csdn.net/xcszbdnl/article/details/14174669 代码风格这里的 Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9953   Accepted: 4161   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1…
对于图的所有顶点,计算出每个顶点的度,度序列.给定一个序列判断序列是否可图. #include<cstdio> #include<algorithm> #include<cstring> using namespace std; int map[15][15]; struct vertext { int d; int num; }x[15]; bool cmp(vertext a,vertext b) { return b.d<a.d; } int main()…
Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 4137   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..…
题目链接:E - New Year and the Acquaintance Estimation 题解参考: Havel–Hakimi algorithm 和 Erdős–Gallai theorem 按照后面那个定理说的,枚举$k∈[1,n]$,对于每一个$k$,计算出向等式两边加入$a_{n+1}$的合法范围,最后所有范围求交即可 最后按照前面那个定理说的,枚举最终区间的时候,对于合法真正的$a_{n+1}$进行输出即可 比赛的时候没看见后面那个定理,推了半天 --------------…
给一个无向图的度序列判定是否可图化,并求方案: 可图化的判定:d1+d2+……dn=0(mod 2).关于具体图的构造,我们可以简单地把奇数度的点配对,剩下的全部搞成自环. 可简单图化的判定(Havel定理):把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d2-1,d3-1,……d(d1+1)-1, d(d1+2),d(d1+3),……dn}可简单图化.简单的说,把d排序后,找出度最大的点(设度为d1),把它与度次大的d1个点之间连边,然后这个点就可以不…
先贴一个百度百科的注释 Havel定理编辑 本词条缺少概述.名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 中文名 Havel定理 外文名 Canisters theorem 特    点 非负整数序列{dn} 实    质 无向图使得图中各点的度 给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化.进一步,若图为简单图,则称此序列可简单图化 可图化的判定:d1+d2+……dn=0(mod 2).关于具体图的构造,我们可以简单地把奇数…
题目链接 /* *题目大意: *给出一个图的每个点的度的序列,求能否构成一个简单图,如果能构出简单图,则输出图的邻接矩阵; * *算法思想: *Havel定理的应用; *给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化; *若图为简单图,则称此序列可简单图化; * *可图化的判定: *d1+d2+……dn==0(mod 2); * *处理过程: *每次处理度数最大的点,设其度数为d则将他与度数最大的d个点(不含自己)个连一条边(若该点度数大于0),…
主题链接:pid=2454">http://acm.hdu.edu.cn/showproblem.php?pid=2454 Problem Description Wang Haiyang is a strong and optimistic Chinese youngster. Although born and brought up in the northern inland city Harbin, he has deep love and yearns for the bound…
http://acm.uestc.edu.cn/#/problem/show/913 握手 Time Limit: 2000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit Status 一群人参加了一次聚会,其中有一些人是好朋友.一对朋友见面后握手且仅握一次手,并且每个人不会和自己握手(废话!).现在告诉你每个人一共握了几次手,请你判断是否存在一种朋友关系满足每个人的握手数. Input 输入多…
题意:根据图的度数列构造图 分析:该题可根据Havel定理来构造图.Havel定理对可图化的判定: 把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d2-1,d3-1,……d(d1+1)-1, d(d1+2),d(d1+3),……dn}可简单图化.简单的说,把d排序后,找出度最大的点(设度为d1),把它与度次大的d1个点之间连边,然后这个点就可以不管了,一直继续这个过程,直到建出完整的图,或出现负度等明显不合理的情况. #include <cstdi…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2454 [别人博客粘贴过来的] 博客地址:https://www.cnblogs.com/debugcool/archive/2011/04/23/HDOJ2454.html 一句话,顶点的度序列 Havel 定理~ 定义:给出一个无向图的顶点度序列 {dn},要求判断能否构造出一个简单无向图. 分析: 贪心的方法是每次把顶点按度大小从大到小排序,取出度最大的点Vi,依次和度较大的那些顶点Vj连接…
给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化.进一步,若图为简单图,则称此序列可简单图化. 此题因为是无自环无重边,所以是简单图.用判定简单图可图化的Havel-Hakimi定理. Havel-Hakimi定理: 一个度序列: 是简单图度序列当且仅当: 是简单图的度序列. 简单来讲,算法流程如下: 设度序列为d1,d2,d3....dn 1.如果度序列中元素有负数或者度序列和不为偶数,则肯定不可图. 2.每次取度序列中最大元素,设为M,如果M>…
Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 8729   Accepted: 3676   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..…
题目链接:http://poj.org/problem?id=1659 题目: 题意:根据他给你的每个点的度数构造一张无向图. 思路:自己WA了几发(好菜啊……)后看到discuss才知道这个要用Havel-Hakimi定理,就跑去搜,这个定理很好理解,想了解的看官请点击链接:http://blog.51cto.com/sbp810050504/883904. 代码实现如下: #include <set> #include <map> #include <queue>…
s是指所有点的度数:由非负整数组成的非增序列s:d1,d2,d3.....,dn(n>=2,d1>=1)是可图的(即能构成图)当且仅当s1:d2-1,d3-1,...dn;是可图的:例如:判断序列s:7,7,4,3,3,3,2,1是否可图.删除序列开头的7,对其后面的7项都减1,得6,3,2,2,1,0:继续删除6,对其后6项减一,最后一位出现了负数,所以这个序列是不可图的:例如:判断序列s:5,4,3,3,2,2,2,1,1,1是否可图.删除序列开头的5,对其后面的5项都减1,得3,2,2,…
Graph Reconstruction Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Let there be a simple graph with N vertices but we just know the degree of each vertex. Is it possible to reconstruct the graph only by these information? A sim…
0.可图:一个非负整数组成的序列如果是某个无向图的度序列,则该序列是可图的. 1.度序列:Sequence Degree,若把图G所有顶点的度数排成一个序列,责成该序列为图G的一个序列.该序列可以是非递增序的.可以是非递减序列.可以是任意无序的. 2.Havel-Hakimi定理:给定一个非负整数序列{d1,d2,...dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化.进一步,若图为简单图,则称此序列可简单图化. 定理描述:由非负整数组成的有限非递增序列,S={d1,d…
给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一相应.则称此序列可图化.进一步.若图为简单图,则称此序列可简单图化 至于能不能依据这个序列构造一个图,就须要依据Havel-Hakimi定理中的方法来构图. 可图化的判定:d1+d2+--dn=0(mod 2).关于详细图的构造.我们能够简单地把奇数度的点配对,剩下的所有搞成自环. 可简单图化的判定(Havel定理):把序列排成不增序,即d1>=d2>=-->=dn,则d可简单图化当且仅当d'={d2-1,d3-1…
Havel-Hakimi定理(握手定理) 由非负整数组成的非增序列s(度序列):d1,d2,…,dn(n>=2,d1>=1)是可图的,当且仅当序列: s1:d2 – 1,d3 – 1,…,dd1+1 – 1,dd1+2,…,dn 是可图的.序列s1中有n-1个非负整数,s序列中d1后的前d1个度数(即d2~dd1+1)减1后构成s1中的前d1个数. 说白了就是先把第一个点(度数为d1)连线到后面d1个点,保证第一个点度数满足,然后再以此类推考虑后面的点.如果后面所有顶点满足并且度数不多不少(最…
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int jc[100003]; int p; int ipow(int x, int b) { ll t = 1, w = x;…
Mittag-Leffler定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$,定义函数$$\psi_{n}(z)=\sum_{j=1}^{k_{n}}\frac{c_{n,j}}{(z-a_{n})^j},n\in\mathbb N$$ 则必存在$D$上的亚纯函数$f(z)$使得$f$以$\{a_{n}\}$为其极点集,且在每个$a_{n}$附近的Laurent展开式的主要部…
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合,G为Sn的置换群,C为Sn的着色集.那么我们等于是要求C中有多少种着色方案是不等价的.定义两种着色等价的概念:如果对于在C中的两种着色c1.c2,存在置换f使得f*c1=c2,那么c1和c2就是等价的.要想求不等价着色的个数,我们要先证明一个定理,即:         Burnside定理:设G(c…
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                         (全题文末) 知识点: 整数n有种和分解方法. 费马小定理:p是质数,若p不能整除a,则 a^(p-1) ≡1(mod p).可利用费马小定理降素数幂. 当m为素数,(m必须是素数才能用费马小定理) a=2时.(a=2只是题中条件,a可以为其他值) mod m =  *      //  k=…
转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298 本文转自head for better博客,版权归其所有,代码系本人自己编写 问题描述      人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天.一个周期内有一天为峰值,在这一天, 人在对应的方面(体力,情感或智力)表现最好.通常这三个周期的峰值不会是同一天. 现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期.然后再给出一个起始日期, 要求…
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standard output Devu wants to decorate his garden with flowers. He has purchased n boxes…
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 . 要解决这个问题首先需要Lucas定理 或者 C!解法. Lucas定理: 我们令n=sp+q , m=tp+r . q , r ≤ p 那么,然后你只要继续对调用Lucas定理即可. 代码可以递归的去完成这个过程,其中递归终点为t = 0 : 伪代码,时间O(logp(n)*p): int L…
[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define eps 1e-8 #define ma…
题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n<32000,0<m<32000),再连接格点(p,0)(p>0),最后回到原点. 牛可以在不碰到电网的情况下被放到电网内部的每一个格点上(十分瘦的牛).如果一个格点碰到了电网,牛绝对不可以被放到该格点之上(或许Farmer John会有一些收获).那么有多少头牛可以被放到农夫约翰的电网…
A Simple Nim Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 980    Accepted Submission(s): 573 Problem Description Two players take turns picking candies from n heaps,the player who picks the l…