[POJ3233]Matrix Power Series 分治+矩阵】的更多相关文章

本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [POJ3233]Matrix Power Series 分治+矩阵 题目大意 A为n×n(n<=30)的矩阵,让你求 \(\sum\limits_{i=1}^{k}A^i\) 并将答案对取模p 输入格式: 有多组测试数据,其中第一行有3个正整数,为n,k(k<=\(10^9\)),p(p<=\(10^4\)) 后面有n行,每行n个数. 输出格式: 输出最后答案的矩阵. 输入输出样例 inpu…
题目要求的是 A+A2+...+Ak,而不是单个矩阵的幂. 那么可以构造一个分块的辅助矩阵 S,其中 A 为原矩阵,E 为单位矩阵,O 为0矩阵    将 S 取幂,会发现一个特性: Sk +1右上角那一块不正是我们要求的 A+A2+...+Ak 于是构造出 S 矩阵,然后对它求矩阵快速幂即可,最后别忘了减去一个单位阵. 时间降为O(n3log2k) PS.减去单位矩阵的过程中要防止该位置小于零. #include<iostream> #include<cstdio> #inclu…
Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 27277   Accepted: 11143 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test ca…
Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 11954   Accepted: 5105 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test cas…
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 19338 Accepted: 8161 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The input contains exactly one test case. T…
题目:Matrix Power Series 传送门:http://poj.org/problem?id=3233 分析: 方法一:引用Matrix67大佬的矩阵十题:这道题两次二分,相当经典.首先我们知道,A^i可以二分求出.然后我们需要对整个题目的数据规模k进行二分.比如,当k=6时,有:$ S(6)= A + A^2 + A^3 + A^4 + A^5 + A^6 =\underline{(A + A^2 + A^3)} + A^3*\underline{(A + A^2 + A^3)}.…
题目链接:http://poj.org/problem?id=3233 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30…
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then…
http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k<=10^9.这道题两次二分,相当经典.首先我们知道,A^i可以二分求出.然后我们需要对整个题目的数据规模k进行二分.比如,当k=6时,有:A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)应用这个式子后,规模…
传送门 题意 给出n,m,k,求 \[\sum_{i=1}^kA^i\] A是矩阵 分析 我们首先会想到等比公式,然后得到这样一个式子: \[\frac{A^{k+1}-E}{A-E}\] 发现要用矩阵除法,可以用求矩阵逆来做,现在我们换一种做法,我们发现有这样一个性质: \[\left[ \begin{matrix} A & E \\ 0 & E \\ \end{matrix} \right]^n= \left[ \begin{matrix} A^{n} & \sum_{i=0}…
S(k)=A^1+A^2...+A^k. 保利求解就超时了,我们考虑一下当k为偶数的情况,A^1+A^2+A^3+A^4...+A^k,取其中前一半A^1+A^2...A^k/2,后一半提取公共矩阵A^k/2后可以发现也是前一半A^1+A^2...A^k/2.因此我们可以考虑只算其中一半,然后A^k/2用矩阵快速幂处理.对于k为奇数,只要转化为k-1+A^k即可.n为矩阵数量,m为矩阵大小,复杂度O[(logn*logn)*m^3] #include <iostream> #include &…
题面 \(solution:\) 首先,如果题目只要我们求\(A^K\) 那这一题我们可以直接模版矩乘快速幂来做,但是它现在让我们求$\sum_{i=1}^{k}{(A^i)} $ 所以我们思考一下这两者是否有什么关系.仔细一想,不难发现几个东西: 一次矩阵乘法复杂度为\(O(n^3)\),所以我们不能进行太多次矩阵乘法 快速幂的复杂度为\(O(logk)\) 再乘一下矩阵乘法的复杂度,我们现在只能再接受\(O(log)\)级别的处理了 矩阵乘法满足交换律和结合律!!!! 若我们已经知道了\(A…
http://poj.org/problem?id=3233 挺有意思的..学习到结构体作为变量的转移, 题意 : 给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k<=10^9. http://blog.csdn.net/rowanhaoa/article/details/21024093 代码: #include<cstdio> #include<cstring> #include<i…
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then…
题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+A^(k/2))+A^k若k为偶数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+A^(k/2)) 也可以这么二分(其实和前面的差不多):S(2n)=A+A^2+...+A^2n=(1+A^n)*(A+A^2+...+A^n)=(1+A^n)*S(n)S(2n+1…
题目链接 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A^2 + A^3 + - + A^k. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 10…
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then…
链接:http://poj.org/problem?id=3233 题意:给一个N*N的矩阵(N<=30),求S = A + A^2 + A^3 + - + A^k(k<=10^9). 思路:非常明显直接用矩阵高速幂暴力求和的方法复杂度O(klogk).肯定会超时.我採用的是二分的方法, A + A^2 + A^3 + - + A^k=(1+A^(k/2)) *(A + A^2 + A^3 + - + A^(k/2)).这样就能够提出一个(1+A^(k/2)),假设k是奇数,单独处理A^k.…
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then…
题目链接:http://poj.org/problem?id=3233 解题报告:输入一个边长为n的矩阵A,然后输入一个k,要你求A + A^2 + A^3 + A^4 + A^5.......A^k,然后结果的每个元素A[i][j] % m.(n <= 30,k < 10^9,m < 10^4) 要用到矩阵快速幂,但我认为最重要的其实还是相加的那个过程,因为k的范围是10^9,一个一个加肯定是不行的,我想了一个办法就是我以k = 8为例说明: ans = A + A^2 + A^3 +…
题目地址:http://poj.org/problem?id=3233 题意:给你一个矩阵A,让你求A+A^2+……+A^k模p的矩阵值 题解:我们知道求A^n我们可以用二分-矩阵快速幂来求,而 当k是奇数A+A^2+……+A^k=A^(k/2+1)+(A+A^2+……A^(k/2))*(1+A^(k/2+1)) 当k是偶数A+A^2+……+A^k=(A+A^2+……A^(k/2))*(1+A^(k/2)) 可以在一次用二分. AC代码: #include <iostream> #includ…
为了搞自动机+矩阵的题目,特来学习矩阵快速幂..........非递归形式的求Sum(A+A^2+...+A^k)不是很懂,继续弄懂................不过代码简洁明了很多,亮神很给力 #include <iostream> #include <algorithm> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #inclu…
题目链接:http://poj.org/problem?id=3233 题目意思:给一个矩阵n*n的矩阵A和一个k,求一个式子 S = A + A2 + A3 + … + Ak. 这个需要用到等比数列和的二分加速. 当n为奇数的时候,Sn=Sn-1+A^k; 当n为偶数的时候,Sn=(S[n/2]+E)*A^(k/2) 自己xjb推一下就知道等比数列和的二分加速是咋回事了.我举个例子,我们假设求等比数列2,4,8,16,32,64的和s=(8+1)*(2+4+8),而2+4+8=(2+4)+8,…
矩阵乘法是可以分块的,而且幂的和也是具有线性的. 不难得到 Si = Si-1+A*Ai-1,Ai = A*Ai-1.然后矩阵快速幂就可以了. /********************************************************* * ------------------ * * author AbyssalFish * **********************************************************/ #include<cstd…
然后,怎么来求这个前k项的和,我把式子推一下 当k为奇数的时候直接SK-1+AK  就又化为偶数的情况了.代码如下: #include<iostream> #include<cstring> using namespace std; #define ll int ll n, mod, k; struct jz { ll num[][]; jz(){ memset(num, , sizeof(num)); } jz operator*(const jz&p)const { j…
Matrix Power Series r时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定矩阵A,求矩阵S=A^1+A^2+--+A^k,输出矩阵,S矩阵中每个元都要模m. 数据范围: n (n ≤ 30) , k (k ≤ 109) ,m (m < 104) 输入 输入三个正整数n,k,m 输出 输出矩阵S mod m 样例输入 2 2 4 0 1 1 1 样例输出 1 2 2 3 这道题不多说,可以得出加速矩阵(E为单位矩阵,也就是形为\(\begin{bmatrix}1&…
矩阵的又一个新使用方法,构造矩阵进行高速幂. 比方拿 nyoj299 Matrix Power Series 来说 给出这样一个递推式: S = A + A2 + A3 + - + Ak. 让你求s.A是一个矩阵,而k很大. 怎么办呢? 推理发现:Fn = A + A*F(n-1) 然后我们能够构造矩阵: (Fn .1 ) =  (Fn-1 ,1) * (A.0. A,1) = (F1 , 1) * (A,0. A,1)^K-1 那么我们就能够用一个矩阵高速幂了. 以下是模板题目的代码: #in…
任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 28619   Accepted: 11646 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The…
Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15417   Accepted: 6602 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The input contains exactly one test cas…
Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15739   Accepted: 6724 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The input contains exactly one test cas…